Suvam Patra, B. Bhowmick, Subhashis Banerjee, P. Kalra
{"title":"High Resolution Point Cloud Generation from Kinect and HD Cameras using Graph Cut","authors":"Suvam Patra, B. Bhowmick, Subhashis Banerjee, P. Kalra","doi":"10.5220/0003863003110316","DOIUrl":null,"url":null,"abstract":"This paper describes a methodology for obtaining a high resolution dense point cloud using Kinect (J. Smisek and Pajdla, 2011) and HD cameras. Kinect produces a VGA resolution photograph and a noisy point cloud. But high resolution images of the same scene can easily be obtained using additional HD cameras. We combine the information to generate a high resolution dense point cloud. First, we do a joint calibration of Kinect and the HD cameras using traditional epipolar geometry (R. Hartley, 2004). Then we use the sparse point cloud obtained from Kinect and the high resolution information from the HD cameras to produce a dense point cloud in a registered frame using graph cut optimization. Experimental results show that this approach can significantly enhance the resolution of the Kinect point cloud.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003863003110316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
This paper describes a methodology for obtaining a high resolution dense point cloud using Kinect (J. Smisek and Pajdla, 2011) and HD cameras. Kinect produces a VGA resolution photograph and a noisy point cloud. But high resolution images of the same scene can easily be obtained using additional HD cameras. We combine the information to generate a high resolution dense point cloud. First, we do a joint calibration of Kinect and the HD cameras using traditional epipolar geometry (R. Hartley, 2004). Then we use the sparse point cloud obtained from Kinect and the high resolution information from the HD cameras to produce a dense point cloud in a registered frame using graph cut optimization. Experimental results show that this approach can significantly enhance the resolution of the Kinect point cloud.