An Uncertainty Estimation Model for Radiometric Intercalibration Between GPM Microwave Imager and TRMM Microwave Imager

Ruiyao Chen, W. Linwood Jones
{"title":"An Uncertainty Estimation Model for Radiometric Intercalibration Between GPM Microwave Imager and TRMM Microwave Imager","authors":"Ruiyao Chen, W. Linwood Jones","doi":"10.1109/MICRORAD.2018.8430717","DOIUrl":null,"url":null,"abstract":"The Global Precipitation Measurement (GPM) Microwave Imager (GMI) is the radiometric calibration transfer standard for the intersatellite radiometric calibration of the NASA GPM constellation radiometers. Because these radiometers are not identical, the GPM Intersatellite Calibration (XCAL) Working Group has developed a robust double difference technique to estimate the brightness temperatures (Tb) bias, which is applied to the brightness temperatures of constellation radiometers before being input into a single satellite radiometer rain retrieval algorithm (GPROF). Since the radiative transfer models and input geophysical parameters are not perfect, errors (uncertainties) in the estimates of the Tb biases will result. Further, the microwave sensors observations are not coincident in time nor exactly spatially collocated, and this also contributes to the Tb bias uncertainty. Therefore, it is important to quantify the bias uncertainty estimates, considering the various sources aforementioned and more, and to include them with the associated Tb bias before producing science products. A generic uncertainty quantification model is developed herein. For illustration purposes, we use the XCAL between GMI and the TRMM Microwave Imager (TMI), and results show that, after removing the biases, the residual uncertainty between GMI and TMI Tb's are< 0.3 K.","PeriodicalId":423162,"journal":{"name":"2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICRORAD.2018.8430717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Global Precipitation Measurement (GPM) Microwave Imager (GMI) is the radiometric calibration transfer standard for the intersatellite radiometric calibration of the NASA GPM constellation radiometers. Because these radiometers are not identical, the GPM Intersatellite Calibration (XCAL) Working Group has developed a robust double difference technique to estimate the brightness temperatures (Tb) bias, which is applied to the brightness temperatures of constellation radiometers before being input into a single satellite radiometer rain retrieval algorithm (GPROF). Since the radiative transfer models and input geophysical parameters are not perfect, errors (uncertainties) in the estimates of the Tb biases will result. Further, the microwave sensors observations are not coincident in time nor exactly spatially collocated, and this also contributes to the Tb bias uncertainty. Therefore, it is important to quantify the bias uncertainty estimates, considering the various sources aforementioned and more, and to include them with the associated Tb bias before producing science products. A generic uncertainty quantification model is developed herein. For illustration purposes, we use the XCAL between GMI and the TRMM Microwave Imager (TMI), and results show that, after removing the biases, the residual uncertainty between GMI and TMI Tb's are< 0.3 K.
GPM微波成像仪与TRMM微波成像仪辐射互定标的不确定性估计模型
全球降水测量(GPM)微波成像仪(GMI)是NASA GPM星座辐射计星间辐射定标的辐射定标传递标准。由于这些辐射计不相同,GPM星间校准(XCAL)工作组开发了一种鲁棒双差技术来估计亮度温度(Tb)偏差,该技术在输入到单个卫星辐射计降雨检索算法(GPROF)之前应用于星座辐射计的亮度温度。由于辐射传输模型和输入的地球物理参数并不完美,因此在估计Tb偏差时会产生误差(不确定性)。此外,微波传感器的观测结果在时间上不一致,在空间上也不完全重合,这也导致了Tb偏置的不确定性。因此,重要的是量化偏倚不确定性估计,考虑到上述各种来源以及更多,并在生产科学产品之前将其纳入相关的Tb偏倚。本文建立了一个通用的不确定度量化模型。为了便于说明,我们使用了GMI和TRMM微波成像仪(TMI)之间的XCAL,结果表明,在消除偏差后,GMI和TMI之间的残余不确定度< 0.3 K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信