Dual-Band FSS Inverse Design Using ANN with Cognition-Driven Sampling

Enze Zhu, Xingxing Xu, Zhun Wei, W. Yin, Ruilong Chen
{"title":"Dual-Band FSS Inverse Design Using ANN with Cognition-Driven Sampling","authors":"Enze Zhu, Xingxing Xu, Zhun Wei, W. Yin, Ruilong Chen","doi":"10.1109/NEMO49486.2020.9343436","DOIUrl":null,"url":null,"abstract":"Recently, artificial neural network (ANN) attracts intensive attentions on solving electromagnetic (EM) inverse problems. In an inverse design of frequency selective surface (FSS) model with ANN, the inputs are S-parameters, while the outputs are structure parameters or material parameters. However, faced with applications where S-parameters vary in a large frequency range with different curve shapes, such as multi-band microwave devices, simple sampling with equal spacing may cause the input dimension to be too large and will require more complex neural network. In this paper, a cognition-driven sampling method is introduced to solve this problem. A parameter-extraction modeling of dual-passband FSS using both equidistant sampling and proposed method is presented and the well-designed FSS is further fabricated to validate the technique.","PeriodicalId":305562,"journal":{"name":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO49486.2020.9343436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, artificial neural network (ANN) attracts intensive attentions on solving electromagnetic (EM) inverse problems. In an inverse design of frequency selective surface (FSS) model with ANN, the inputs are S-parameters, while the outputs are structure parameters or material parameters. However, faced with applications where S-parameters vary in a large frequency range with different curve shapes, such as multi-band microwave devices, simple sampling with equal spacing may cause the input dimension to be too large and will require more complex neural network. In this paper, a cognition-driven sampling method is introduced to solve this problem. A parameter-extraction modeling of dual-passband FSS using both equidistant sampling and proposed method is presented and the well-designed FSS is further fabricated to validate the technique.
基于认知驱动采样的神经网络双带FSS反设计
近年来,人工神经网络(ANN)在求解电磁逆问题方面受到了广泛的关注。在基于人工神经网络的频率选择曲面(FSS)模型反设计中,输入为s参数,输出为结构参数或材料参数。然而,面对s参数在大频率范围内变化且曲线形状不同的应用,如多波段微波器件,简单的等间距采样可能会导致输入维数过大,需要更复杂的神经网络。本文提出了一种认知驱动的采样方法来解决这一问题。提出了一种采用等距采样和该方法的双通带FSS参数提取模型,并进一步制作了设计良好的FSS以验证该技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信