Data Driven Heating Energy Load Forecast Modeling Enhanced by Nonlinear Autoregressive Exogenous Neural Networks

J. Ryu, Seongju Chang
{"title":"Data Driven Heating Energy Load Forecast Modeling Enhanced by Nonlinear Autoregressive Exogenous Neural Networks","authors":"J. Ryu, Seongju Chang","doi":"10.18178/ijscer.8.3.246-252","DOIUrl":null,"url":null,"abstract":"As the building sector consumes considerable portion of energy worldwide, effective management of building energy is of great importance. In this regard, forecasting building energy consumption is essential to use and manage the energy efficiently. This paper describes hourly heating energy load forecasting method with the load dataset of National Renewable Energy Laboratory (NREL)'s Research Support Facility (RSF) in the United States using both typical Artificial Neural Network and Nonlinear Autoregressive with Exogenous Inputs (NARX) Neural Network. The accuracy of the model is evaluated by MBE (Mean Bias Error) and CvRMSE (Coefficient of Variation of the Root Mean Square Error). The NARX neural network model showed a better performance than typical ANN model and it is confirmed that the model satisfies the acceptable error range proposed by ASHRAE guideline 14. This research explored a way to build a better performing neural network model for heating energy load prediction based on accumulated dataset.","PeriodicalId":101411,"journal":{"name":"International journal of structural and civil engineering research","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of structural and civil engineering research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijscer.8.3.246-252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

As the building sector consumes considerable portion of energy worldwide, effective management of building energy is of great importance. In this regard, forecasting building energy consumption is essential to use and manage the energy efficiently. This paper describes hourly heating energy load forecasting method with the load dataset of National Renewable Energy Laboratory (NREL)'s Research Support Facility (RSF) in the United States using both typical Artificial Neural Network and Nonlinear Autoregressive with Exogenous Inputs (NARX) Neural Network. The accuracy of the model is evaluated by MBE (Mean Bias Error) and CvRMSE (Coefficient of Variation of the Root Mean Square Error). The NARX neural network model showed a better performance than typical ANN model and it is confirmed that the model satisfies the acceptable error range proposed by ASHRAE guideline 14. This research explored a way to build a better performing neural network model for heating energy load prediction based on accumulated dataset.
基于非线性自回归外源神经网络的供热负荷预测模型
由于建筑行业消耗了世界范围内相当大的一部分能源,有效的建筑能源管理是非常重要的。在这方面,预测建筑能耗对于有效地使用和管理能源至关重要。本文介绍了利用美国国家可再生能源实验室(NREL)研究支持机构(RSF)的负荷数据集,采用典型的人工神经网络和非线性自回归外生输入(NARX)神经网络进行小时供热负荷预测的方法。模型的准确性通过MBE (Mean Bias Error)和CvRMSE (Coefficient of Variation of Root Mean Square Error)来评估。NARX神经网络模型比典型的人工神经网络模型表现出更好的性能,并证实该模型满足ASHRAE准则14提出的可接受误差范围。本研究探索了一种基于累积数据集构建性能更好的供热能源负荷预测神经网络模型的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信