Cryogenic, X-band and Ka-band InP HEMT based LNAs for the Deep Space Network

J. Bautista, J. Bowen, N.E. Fernandez, Z. Fujiwara, J. Loreman, S. Petty, J. L. Prater, R. Grunbacher, R. Lai, M. Nishimoto, M. R. Murti, J. Laskar
{"title":"Cryogenic, X-band and Ka-band InP HEMT based LNAs for the Deep Space Network","authors":"J. Bautista, J. Bowen, N.E. Fernandez, Z. Fujiwara, J. Loreman, S. Petty, J. L. Prater, R. Grunbacher, R. Lai, M. Nishimoto, M. R. Murti, J. Laskar","doi":"10.1109/AERO.2001.931264","DOIUrl":null,"url":null,"abstract":"Exploration of the Solar System with automated spacecraft that are more than ten astronomical units from Earth requires very large antennae employing extremely sensitive receivers. A key figure of merit in the specification of the spacecraft-to-earth telecommunications link is the ratio of the antenna gain to operational noise temperature (G/Top) of the system. The Deep Space Network (DSN) receivers are cryogenic, low-noise amplifiers (LNAs). InP HEMT LNA modules are demonstrating noise temperatures less than ten times the quantum noise limit (10 hf/k) from 1 to 100 GHz. To date, the lowest noise LNA modules developed for the DSN have demonstrated noise temperatures of under 4 K at 8.4 GHz and 11 K at 32 GHz. The development and demonstration of cryogenic, InP HEMT based front-end amplifiers for the DSN requires accurate component and module characterization, and modeling from 1 to 100 GHz at physical temperatures down to and below 12 K, because of the broad band frequency response of InP HEMTs. The characterization and modeling begins with the HEMT chip, proceeds to the multi-stage HEMT LNA module, and culminates with the complete front-end cryogenic receiver package for the antenna. This paper presents an overview of this development process with emphasis on comparison between modeled and measured results at 8.4 GHz. Results are shown for devices, LNA modules, front-end receiver packages employing these modules, and antennae employing these packages.","PeriodicalId":329225,"journal":{"name":"2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2001.931264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Exploration of the Solar System with automated spacecraft that are more than ten astronomical units from Earth requires very large antennae employing extremely sensitive receivers. A key figure of merit in the specification of the spacecraft-to-earth telecommunications link is the ratio of the antenna gain to operational noise temperature (G/Top) of the system. The Deep Space Network (DSN) receivers are cryogenic, low-noise amplifiers (LNAs). InP HEMT LNA modules are demonstrating noise temperatures less than ten times the quantum noise limit (10 hf/k) from 1 to 100 GHz. To date, the lowest noise LNA modules developed for the DSN have demonstrated noise temperatures of under 4 K at 8.4 GHz and 11 K at 32 GHz. The development and demonstration of cryogenic, InP HEMT based front-end amplifiers for the DSN requires accurate component and module characterization, and modeling from 1 to 100 GHz at physical temperatures down to and below 12 K, because of the broad band frequency response of InP HEMTs. The characterization and modeling begins with the HEMT chip, proceeds to the multi-stage HEMT LNA module, and culminates with the complete front-end cryogenic receiver package for the antenna. This paper presents an overview of this development process with emphasis on comparison between modeled and measured results at 8.4 GHz. Results are shown for devices, LNA modules, front-end receiver packages employing these modules, and antennae employing these packages.
用于深空网络的低温、x波段和ka波段InP HEMT LNAs
用距离地球10个天文单位以上的自动航天器探索太阳系,需要非常大的天线和极其灵敏的接收器。在星地通信链路规范中,一个关键的性能指标是系统的天线增益与工作噪声温度(G/Top)的比值。深空网络(DSN)接收器是低温低噪声放大器(LNAs)。InP HEMT LNA模块的噪声温度低于量子噪声极限(10 hf/k)的10倍,范围为1至100 GHz。迄今为止,为DSN开发的最低噪声LNA模块在8.4 GHz时的噪声温度低于4 K,在32 GHz时的噪声温度低于11 K。由于InP HEMT的宽带频率响应,用于DSN的基于InP HEMT的低温前端放大器的开发和演示需要精确的组件和模块表征,以及在物理温度低于12 K时从1到100 GHz的建模。表征和建模从HEMT芯片开始,接着是多级HEMT LNA模块,最后是天线的完整前端低温接收器封装。本文概述了这一发展过程,重点比较了8.4 GHz的模型和测量结果。结果显示了器件、LNA模块、采用这些模块的前端接收器封装和采用这些封装的天线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信