Tracking Distance and Velocity Using a Stereo Vision System

Y. Lim, Chung-Hee Lee, Soon Kwon, Jong-hun Lee
{"title":"Tracking Distance and Velocity Using a Stereo Vision System","authors":"Y. Lim, Chung-Hee Lee, Soon Kwon, Jong-hun Lee","doi":"10.1109/FGCNS.2008.42","DOIUrl":null,"url":null,"abstract":"In this paper, a method to estimate and track the distance and velocity of an obstacle on the road based on a stereo vision system is presented. The distance and velocity can be calculated using the disparity in the stereo vision system. However, the quantization error of the pixels causes a deterioration in accuracy. The sub-pixel interpolation is used to compensate for the error, and then, the distance and velocity are tracked with a strong tracking extended Kalman filter using a constant velocity model (STEKF-CVM). The Monte-Carlo simulation results show that the performance of STEKF-CVM is better than that of other filters.","PeriodicalId":370780,"journal":{"name":"2008 Second International Conference on Future Generation Communication and Networking Symposia","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Future Generation Communication and Networking Symposia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGCNS.2008.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, a method to estimate and track the distance and velocity of an obstacle on the road based on a stereo vision system is presented. The distance and velocity can be calculated using the disparity in the stereo vision system. However, the quantization error of the pixels causes a deterioration in accuracy. The sub-pixel interpolation is used to compensate for the error, and then, the distance and velocity are tracked with a strong tracking extended Kalman filter using a constant velocity model (STEKF-CVM). The Monte-Carlo simulation results show that the performance of STEKF-CVM is better than that of other filters.
利用立体视觉系统跟踪距离和速度
本文提出了一种基于立体视觉系统的道路障碍物距离和速度估计与跟踪方法。利用立体视觉系统中的视差可以计算出距离和速度。然而,像素的量化误差导致了精度的下降。采用亚像素插值补偿误差,然后采用恒速度模型(STEKF-CVM)对距离和速度进行强跟踪扩展卡尔曼滤波跟踪。蒙特卡罗仿真结果表明,STEKF-CVM滤波器的性能优于其他滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信