A Graphical Convolutional Network-based Method for 3D Point Cloud Classification

Liang Wang, Jianshu Li, Deqiao Fan
{"title":"A Graphical Convolutional Network-based Method for 3D Point Cloud Classification","authors":"Liang Wang, Jianshu Li, Deqiao Fan","doi":"10.1109/CCDC52312.2021.9601582","DOIUrl":null,"url":null,"abstract":"Point cloud data classification has been widely used in autonomous driving, robot perception, and virtual/augmented reality. Due to its irregularity and disorder, the classification task of point clouds needs to transform the point cloud into a multi-view or voxel grid, and then use the traditional convolution neural network processing. However, this process is not only complex in operation but also low in classification accuracy. To solve this problem, a new point cloud classification method based on the graphical convolutional neural network (GCN) is proposed. Firstly, based on PointNet, KNN graph is introduced to obtain global deep features. Then the 3D point cloud is represented as a directed graph, local features are extracted by edge convolution. Finally, the extracted global and local features are aggregated to represent and classify point clouds. The proposed network is evaluated on the open dataset ModelNet40 and 3DMNIST. Experimental results show that the proposed network can achieve on par or better performance than state-of-the-art, such as PointNet, PointNet++, DGCNN, and PointCNN, for point cloud classification.","PeriodicalId":143976,"journal":{"name":"2021 33rd Chinese Control and Decision Conference (CCDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 33rd Chinese Control and Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC52312.2021.9601582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Point cloud data classification has been widely used in autonomous driving, robot perception, and virtual/augmented reality. Due to its irregularity and disorder, the classification task of point clouds needs to transform the point cloud into a multi-view or voxel grid, and then use the traditional convolution neural network processing. However, this process is not only complex in operation but also low in classification accuracy. To solve this problem, a new point cloud classification method based on the graphical convolutional neural network (GCN) is proposed. Firstly, based on PointNet, KNN graph is introduced to obtain global deep features. Then the 3D point cloud is represented as a directed graph, local features are extracted by edge convolution. Finally, the extracted global and local features are aggregated to represent and classify point clouds. The proposed network is evaluated on the open dataset ModelNet40 and 3DMNIST. Experimental results show that the proposed network can achieve on par or better performance than state-of-the-art, such as PointNet, PointNet++, DGCNN, and PointCNN, for point cloud classification.
基于图形卷积网络的三维点云分类方法
点云数据分类已广泛应用于自动驾驶、机器人感知、虚拟/增强现实等领域。由于点云的不规则性和无序性,分类任务需要将点云转换成多视图或体素网格,然后使用传统的卷积神经网络处理。然而,该过程不仅操作复杂,而且分类精度较低。为了解决这一问题,提出了一种基于图形卷积神经网络(GCN)的点云分类方法。首先,在PointNet的基础上,引入KNN图来获取全局深度特征;然后将三维点云表示为有向图,通过边缘卷积提取局部特征;最后,对提取的全局和局部特征进行聚合,对点云进行表示和分类。该网络在开放数据集ModelNet40和3DMNIST上进行了评估。实验结果表明,所提出的网络在点云分类方面可以达到与PointNet、pointnet++、DGCNN和PointCNN等先进网络相当或更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信