Machine Learning for 3D-IC Electric-Thermal Simulation and Management

Yong-sheng Li, E. Li, Huan Yu, Hanju Oh, Muhannad S. Bakir, Madhavan Swaminathan
{"title":"Machine Learning for 3D-IC Electric-Thermal Simulation and Management","authors":"Yong-sheng Li, E. Li, Huan Yu, Hanju Oh, Muhannad S. Bakir, Madhavan Swaminathan","doi":"10.1109/COMPEM.2018.8496543","DOIUrl":null,"url":null,"abstract":"Thermal management for 3-D ICs is not only important but also challenging. While air-cooled heat sink is agreed to become incapable for 3-D ICs, microchannel cooling has provided a better solution. In this paper, a machine learning method, Bayesian Optimization (BO), is applied in 3-D ICs with a time-dependent power map to intelligently control the flow rates of the tier-specific microfluidic heatsink (MFHS) for dynamic thermal management (DTM).","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Thermal management for 3-D ICs is not only important but also challenging. While air-cooled heat sink is agreed to become incapable for 3-D ICs, microchannel cooling has provided a better solution. In this paper, a machine learning method, Bayesian Optimization (BO), is applied in 3-D ICs with a time-dependent power map to intelligently control the flow rates of the tier-specific microfluidic heatsink (MFHS) for dynamic thermal management (DTM).
3D-IC电-热模拟与管理的机器学习
3-D集成电路的热管理不仅重要,而且具有挑战性。虽然风冷散热器被认为无法用于3-D集成电路,但微通道冷却提供了更好的解决方案。本文将机器学习方法贝叶斯优化(BO)应用于具有时间相关功率图的三维集成电路中,以智能控制分层微流控散热器(MFHS)的流量,实现动态热管理(DTM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信