Modelling the enamelled wire manufacturing process to improve on-line quality control

N. Mort, L. Bridges
{"title":"Modelling the enamelled wire manufacturing process to improve on-line quality control","authors":"N. Mort, L. Bridges","doi":"10.1109/ACC.1999.786314","DOIUrl":null,"url":null,"abstract":"This paper examines the potential for using empirical models derived from real plant data for online quality control for an enamelled wire production process. Existing procedures are based around a well-established offline technique known as Tangent Delta. Using data recorded from normal production operations, models representing parameter input/output relationships are fast developed using standard linear regression. The linear models do not capture the behaviour of the process sufficiently well so other methods based on nonlinear and fuzzy methods and artificial neural networks are developed. The ability of each of these methods to capture the process characteristics are compared using test set data. The results indicate that the nonlinear models derived using the group method of data handling (GMDH) approach offer considerable promise for online quality control in this industrial application.","PeriodicalId":441363,"journal":{"name":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1999.786314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines the potential for using empirical models derived from real plant data for online quality control for an enamelled wire production process. Existing procedures are based around a well-established offline technique known as Tangent Delta. Using data recorded from normal production operations, models representing parameter input/output relationships are fast developed using standard linear regression. The linear models do not capture the behaviour of the process sufficiently well so other methods based on nonlinear and fuzzy methods and artificial neural networks are developed. The ability of each of these methods to capture the process characteristics are compared using test set data. The results indicate that the nonlinear models derived using the group method of data handling (GMDH) approach offer considerable promise for online quality control in this industrial application.
对漆包线制造过程进行建模,以提高在线质量控制
本文探讨了利用实际工厂数据得出的经验模型对漆包线生产过程进行在线质量控制的可能性。现有的程序是基于一种被称为tan Delta的成熟的离线技术。使用从正常生产操作中记录的数据,使用标准线性回归快速开发表示参数输入/输出关系的模型。线性模型不能很好地捕捉过程的行为,因此基于非线性和模糊方法以及人工神经网络的其他方法被开发出来。使用测试集数据比较了每种方法捕获过程特征的能力。结果表明,采用数据处理成组方法(GMDH)方法建立的非线性模型在该工业应用中的在线质量控制中具有很大的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信