{"title":"TubeTagger - YouTube-based Concept Detection","authors":"A. Ulges, Markus Koch, Damian Borth, T. Breuel","doi":"10.1109/ICDMW.2009.41","DOIUrl":null,"url":null,"abstract":"We present TubeTagger, a concept-based video retrieval system that exploits web video as an information source. The system performs a visual learning on YouTube clips (i. e., it trains detectors for semantic concepts like \"soccer\" or \"windmill\"), and a semantic learning on the associated tags (i.e., relations between concepts like \"swimming\" and \"water\" are discovered). This way, a text-based video search free of manual indexing is realized. We present a quantitative study on web-based concept detection comparing several features and statistical models on a large-scale dataset of YouTube content. Beyond this, we report several key findings related to concept learning from YouTube and its generalization to different domains, and illustrate certain characteristics of YouTube-learned concepts, like focus of interest and redundancy. To get a hands-on impression of web-based concept detection, we invite researchers and practitioners to test our web demo.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
We present TubeTagger, a concept-based video retrieval system that exploits web video as an information source. The system performs a visual learning on YouTube clips (i. e., it trains detectors for semantic concepts like "soccer" or "windmill"), and a semantic learning on the associated tags (i.e., relations between concepts like "swimming" and "water" are discovered). This way, a text-based video search free of manual indexing is realized. We present a quantitative study on web-based concept detection comparing several features and statistical models on a large-scale dataset of YouTube content. Beyond this, we report several key findings related to concept learning from YouTube and its generalization to different domains, and illustrate certain characteristics of YouTube-learned concepts, like focus of interest and redundancy. To get a hands-on impression of web-based concept detection, we invite researchers and practitioners to test our web demo.