Optimal active power flow solutions using a modified Hopfield neural network

R. S. Hartati, M. El-Hawary
{"title":"Optimal active power flow solutions using a modified Hopfield neural network","authors":"R. S. Hartati, M. El-Hawary","doi":"10.1109/CCECE.2001.933681","DOIUrl":null,"url":null,"abstract":"The optimal power flow is a general nonlinear programming problem with a nonlinear objective function and nonlinear functional equality and inequality constraints. This paper presents a proposed strategy for optimal active power flow using a modified Hopfield neural network. The objective function is the incremental generation cost function in quadratic form which is expanded in a second-order Taylor series. The equality and inequality constraints are modelled using a linearized network and appended to the objective function using suitable penalty functions to form an augmented cost function. The Hopfield neural network was simulated on a digital computer for fourteen-bus and thirty-bus test system. The optimal solution obtained using this approach is comparable to the solution obtained using the conventional method.","PeriodicalId":184523,"journal":{"name":"Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2001.933681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The optimal power flow is a general nonlinear programming problem with a nonlinear objective function and nonlinear functional equality and inequality constraints. This paper presents a proposed strategy for optimal active power flow using a modified Hopfield neural network. The objective function is the incremental generation cost function in quadratic form which is expanded in a second-order Taylor series. The equality and inequality constraints are modelled using a linearized network and appended to the objective function using suitable penalty functions to form an augmented cost function. The Hopfield neural network was simulated on a digital computer for fourteen-bus and thirty-bus test system. The optimal solution obtained using this approach is comparable to the solution obtained using the conventional method.
基于改进Hopfield神经网络的最优有功潮流解
最优潮流是一个具有非线性目标函数和非线性函数不等式约束的一般非线性规划问题。本文提出了一种基于改进Hopfield神经网络的有功潮流优化策略。目标函数是用二阶泰勒级数展开的二次型增量生成成本函数。利用线性化网络对等式和不等式约束进行建模,并利用适当的惩罚函数附加到目标函数上,形成增广代价函数。在数字计算机上对14总线和30总线测试系统的Hopfield神经网络进行了仿真。该方法得到的最优解与传统方法得到的最优解具有可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信