Parameter tuning of Artificial Bee Colony algorithm for energy efficiency optimization in massive MIMO systems

F. Bouchibane, M. Bensebti
{"title":"Parameter tuning of Artificial Bee Colony algorithm for energy efficiency optimization in massive MIMO systems","authors":"F. Bouchibane, M. Bensebti","doi":"10.1109/DAT.2017.7889188","DOIUrl":null,"url":null,"abstract":"Massive MIMO technology employs a large number of antennae at base station (BS). It can bring substantial improvements over conventional point-to-point MIMO by focusing energy into ever smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. However, increasing the number of antennae at BS will automatically leads to additional energy consumption due to RF chains and signal processing circuit. In this study, we attempt to exploit Artificial Bee Colony (ABC) algorithm in optimizing the energy efficiency by finding the suitable combination (antennae size, active users) that maximize the energy efficiency. The best ABC control parameters are determined to attain the maximal energy efficiency.","PeriodicalId":371206,"journal":{"name":"2017 Seminar on Detection Systems Architectures and Technologies (DAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seminar on Detection Systems Architectures and Technologies (DAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAT.2017.7889188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Massive MIMO technology employs a large number of antennae at base station (BS). It can bring substantial improvements over conventional point-to-point MIMO by focusing energy into ever smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. However, increasing the number of antennae at BS will automatically leads to additional energy consumption due to RF chains and signal processing circuit. In this study, we attempt to exploit Artificial Bee Colony (ABC) algorithm in optimizing the energy efficiency by finding the suitable combination (antennae size, active users) that maximize the energy efficiency. The best ABC control parameters are determined to attain the maximal energy efficiency.
大规模MIMO系统能效优化的人工蜂群算法参数整定
大规模MIMO技术在基站(BS)中使用大量天线。与传统的点对点MIMO相比,它可以将能量集中到更小的空间区域,从而大大提高吞吐量和辐射能量效率。然而,由于射频链和信号处理电路的原因,增加BS天线的数量将自动导致额外的能量消耗。在本研究中,我们试图利用人工蜂群(Artificial Bee Colony, ABC)算法来优化能量效率,通过寻找合适的组合(天线大小,活跃用户)来最大化能量效率。确定了最佳的ABC控制参数,以达到最大的能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信