{"title":"Three-Species Plasma-Neutral Modeling of THz Breakdown for Passive Plasma-Based Photonic Crystal Devices","authors":"W. Thomas, E. Meier, U. Shumlak","doi":"10.1109/ICOPS45751.2022.9813176","DOIUrl":null,"url":null,"abstract":"Plasma photonic crystals (PPCs) have the potential to significantly expand the capabilities of current millimeter wave filtering and switching technologies by providing high speed (μs) control of energy band-gap/pass characteristics in the GHz through low THz range. Furthermore, dielectric photonic crystals can be functionalized with self-initiated plasmas in resonant defects to provide passive power modulation. Constructing experimental devices in the low THz range is challenging, requiring plasma densities on the order of 10 22 m -3 , and sub-millimeter device characteristic lengths. Drift-diffusion models typically used in low temperature and process plasma simulations rely on reaction rate and transport coefficients calculated by Boltzmann solvers that assume low ionization fractions (<10 -5 ), and steady-state electric fields and electron densities. Ad hoc extensions to temporally and spatially varying fields must be made. Exploring computationally tractable alternative methods for high-density and high-ionization-fraction reacting plasma-neutral mixtures is therefore strongly motivated. In this work, an existing three-species (electron-ion-neutral atom) 5-moment model developed by Meier and Shumlak [ Physics of Plasmas , 19, 7, (2012)] is extended to include electron-neutral relative velocity in reaction rates in order to capture electrostatic and AC breakdown. Initial results and model validation for a THz argon plasma are presented.","PeriodicalId":175964,"journal":{"name":"2022 IEEE International Conference on Plasma Science (ICOPS)","volume":"07 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOPS45751.2022.9813176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Plasma photonic crystals (PPCs) have the potential to significantly expand the capabilities of current millimeter wave filtering and switching technologies by providing high speed (μs) control of energy band-gap/pass characteristics in the GHz through low THz range. Furthermore, dielectric photonic crystals can be functionalized with self-initiated plasmas in resonant defects to provide passive power modulation. Constructing experimental devices in the low THz range is challenging, requiring plasma densities on the order of 10 22 m -3 , and sub-millimeter device characteristic lengths. Drift-diffusion models typically used in low temperature and process plasma simulations rely on reaction rate and transport coefficients calculated by Boltzmann solvers that assume low ionization fractions (<10 -5 ), and steady-state electric fields and electron densities. Ad hoc extensions to temporally and spatially varying fields must be made. Exploring computationally tractable alternative methods for high-density and high-ionization-fraction reacting plasma-neutral mixtures is therefore strongly motivated. In this work, an existing three-species (electron-ion-neutral atom) 5-moment model developed by Meier and Shumlak [ Physics of Plasmas , 19, 7, (2012)] is extended to include electron-neutral relative velocity in reaction rates in order to capture electrostatic and AC breakdown. Initial results and model validation for a THz argon plasma are presented.