A Pulse Length and Intensity Study of Proton Generation from Microtube Foil Targets

J. Strehlow, M. Bailly-Grandvaux, J. Kim, S. Bolaños, H. Smith, C. Aniculaesei, H. Chen, T. Ditmire, M. Donovan, A. Haid, E. Alfonso, B. Hegelich, T. Ma, H. Mclean, H. Quevedo, M. Spinks, F. Beg
{"title":"A Pulse Length and Intensity Study of Proton Generation from Microtube Foil Targets","authors":"J. Strehlow, M. Bailly-Grandvaux, J. Kim, S. Bolaños, H. Smith, C. Aniculaesei, H. Chen, T. Ditmire, M. Donovan, A. Haid, E. Alfonso, B. Hegelich, T. Ma, H. Mclean, H. Quevedo, M. Spinks, F. Beg","doi":"10.1109/icops45751.2022.9813132","DOIUrl":null,"url":null,"abstract":"Intense lasers interacting with solid foils can drive ~TV/m electric fields, accelerating ions to MeV energies. Simulations and experimental data [1] , [2] show that the ion energies and numbers can increase using structured targets. In this study, we experimentally observe that structured targets can dramatically enhance proton acceleration in the target normal sheath acceleration (TNSA) regime. At the Texas Petawatt Laser, we compared proton acceleration from a 1µm Ag flat foil, to microtube structures 3D printed on the front side of Ag foils. A pulse length (140 – 500 fs) and intensity ( [6 – 20] ×10 20 W/cm 2 ) study optimized laser parameters, where microtube targets increase the proton cutoff energy by ~2× and the energetic proton yield (>1.5 MeV) by ~3×. Radiation-hydrodynamic simulations indicate that for sufficiently high laser energy, the pre-pulse shutters the microtubes with an overcritical plasma, damping their performance, in good agreement with the experimental optimum. 2D EPOCH simulations are performed, with and without the pre-plasma profile imported, to better understand the coupling of laser energy to the microtube targets.","PeriodicalId":175964,"journal":{"name":"2022 IEEE International Conference on Plasma Science (ICOPS)","volume":"s3-36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icops45751.2022.9813132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intense lasers interacting with solid foils can drive ~TV/m electric fields, accelerating ions to MeV energies. Simulations and experimental data [1] , [2] show that the ion energies and numbers can increase using structured targets. In this study, we experimentally observe that structured targets can dramatically enhance proton acceleration in the target normal sheath acceleration (TNSA) regime. At the Texas Petawatt Laser, we compared proton acceleration from a 1µm Ag flat foil, to microtube structures 3D printed on the front side of Ag foils. A pulse length (140 – 500 fs) and intensity ( [6 – 20] ×10 20 W/cm 2 ) study optimized laser parameters, where microtube targets increase the proton cutoff energy by ~2× and the energetic proton yield (>1.5 MeV) by ~3×. Radiation-hydrodynamic simulations indicate that for sufficiently high laser energy, the pre-pulse shutters the microtubes with an overcritical plasma, damping their performance, in good agreement with the experimental optimum. 2D EPOCH simulations are performed, with and without the pre-plasma profile imported, to better understand the coupling of laser energy to the microtube targets.
微管箔靶质子生成的脉冲长度和强度研究
与固体箔相互作用的强激光可以驱动~TV/m的电场,将离子加速到MeV能量。模拟和实验数据[1],[2]表明,使用结构靶可以提高离子的能量和数量。在本研究中,我们通过实验观察到,在靶正常鞘层加速(TNSA)机制下,结构靶可以显著增强质子加速。在德克萨斯佩瓦激光器上,我们比较了1 μ m银平面箔的质子加速度,以及在银箔正面3D打印的微管结构。脉冲长度(140 ~ 500 fs)和强度([6 ~ 20]×10 20 W/ cm2)优化了激光参数,其中微管靶使质子截止能量提高了~2倍,高能质子产率(>1.5 MeV)提高了~3倍。辐射-流体动力学模拟表明,当激光能量足够高时,预脉冲会使等离子体过临界的微管关闭,从而抑制微管的性能,这与实验最优值吻合较好。为了更好地理解激光能量与微管目标的耦合,在导入和不导入预等离子体轮廓的情况下进行了2D EPOCH模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信