{"title":"Comparing Three Notations for Defining Scenario-Based Model Tests: A Controlled Experiment","authors":"Bernhard Hoisl, Stefan Sobernig, Mark Strembeck","doi":"10.1109/QUATIC.2014.19","DOIUrl":null,"url":null,"abstract":"Scenarios are an established means to specify requirements for software systems. Scenario-based tests allow for validating software models against such requirements. In this paper, we consider three alternative notations to define such scenario tests on structural models: a semi structured natural-language notation, a diagrammatic notation, and a fully-structured textual notation. In particular, we performed a study to understand how these three notations compare to each other with respect to accuracy and effort of comprehending scenario-test definitions, as well as with respect to the detection of errors in the models under test. 20 software professionals (software engineers, testers, researchers) participated in a controlled experiment based on six different comprehension and maintenance tasks. For each of these tasks, questions on a scenario-test definition and on a model under test had to be answered. In an ex-post questionnaire, the participants rated each notation on a number of dimensions (e.g., practicality or scalability). Our results show that the choice of a specific scenario-test notation can affect the productivity (in terms of correctness and time-effort) when testing software models for requirements conformance. In particular, the participants of our study spent comparatively less time and completed the tasks more accurately when using the natural-language notation compared to the other two notations. Moreover, the participants of our study explicitly expressed their preference for the natural-language notation.","PeriodicalId":317037,"journal":{"name":"2014 9th International Conference on the Quality of Information and Communications Technology","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on the Quality of Information and Communications Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QUATIC.2014.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
Scenarios are an established means to specify requirements for software systems. Scenario-based tests allow for validating software models against such requirements. In this paper, we consider three alternative notations to define such scenario tests on structural models: a semi structured natural-language notation, a diagrammatic notation, and a fully-structured textual notation. In particular, we performed a study to understand how these three notations compare to each other with respect to accuracy and effort of comprehending scenario-test definitions, as well as with respect to the detection of errors in the models under test. 20 software professionals (software engineers, testers, researchers) participated in a controlled experiment based on six different comprehension and maintenance tasks. For each of these tasks, questions on a scenario-test definition and on a model under test had to be answered. In an ex-post questionnaire, the participants rated each notation on a number of dimensions (e.g., practicality or scalability). Our results show that the choice of a specific scenario-test notation can affect the productivity (in terms of correctness and time-effort) when testing software models for requirements conformance. In particular, the participants of our study spent comparatively less time and completed the tasks more accurately when using the natural-language notation compared to the other two notations. Moreover, the participants of our study explicitly expressed their preference for the natural-language notation.