A minimum population search hybrid for large scale global optimization

Antonio Bolufé-Röhler, Sonia Fiol-González, Stephen Y. Chen
{"title":"A minimum population search hybrid for large scale global optimization","authors":"Antonio Bolufé-Röhler, Sonia Fiol-González, Stephen Y. Chen","doi":"10.1109/CEC.2015.7257125","DOIUrl":null,"url":null,"abstract":"Large-scale global optimization is a challenging task which is embedded in many scientific and engineering applications. Among large scale problems, multimodal functions present an exceptional challenge because of the need to promote exploration. In this paper we present a hybrid heuristic specifically designed for optimizing large scale multimodal functions. The hybrid is based on the unbiased exploration ability of Minimum Population Search. Minimum Population Search is a recently developed metaheuristic able to efficiently optimize multimodal functions. However, MPS lacks techniques for exploiting search gradients. To overcome this limitation, we combine its exploration power with the intense local search of the CMA-ES algorithm. The proposed algorithm is evaluated on the test functions provided by the LSGO competition of IEEE Congress of Evolutionary Computation (CEC 2013).","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7257125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Large-scale global optimization is a challenging task which is embedded in many scientific and engineering applications. Among large scale problems, multimodal functions present an exceptional challenge because of the need to promote exploration. In this paper we present a hybrid heuristic specifically designed for optimizing large scale multimodal functions. The hybrid is based on the unbiased exploration ability of Minimum Population Search. Minimum Population Search is a recently developed metaheuristic able to efficiently optimize multimodal functions. However, MPS lacks techniques for exploiting search gradients. To overcome this limitation, we combine its exploration power with the intense local search of the CMA-ES algorithm. The proposed algorithm is evaluated on the test functions provided by the LSGO competition of IEEE Congress of Evolutionary Computation (CEC 2013).
一种大规模全局优化的最小种群搜索混合算法
大规模全局优化是一项具有挑战性的任务,它嵌入在许多科学和工程应用中。在大规模的问题中,由于需要促进探索,多模式功能提出了一个特殊的挑战。本文提出了一种混合启发式算法,专门用于优化大规模多模态函数。该混合算法基于最小种群搜索的无偏搜索能力。最小种群搜索是近年来发展起来的一种能有效优化多模态函数的元启发式算法。然而,MPS缺乏利用搜索梯度的技术。为了克服这一局限性,我们将其探索能力与CMA-ES算法的强局部搜索相结合。该算法在IEEE进化计算大会(CEC 2013) LSGO竞赛提供的测试函数上进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信