Evaluating Fuzzy Analogy on incomplete software projects data

Ibtissam Abnane, A. Idri
{"title":"Evaluating Fuzzy Analogy on incomplete software projects data","authors":"Ibtissam Abnane, A. Idri","doi":"10.1109/SSCI.2016.7849922","DOIUrl":null,"url":null,"abstract":"Missing Data (MD) is a widespread problem that can affect the ability to use data to construct effective software development effort prediction systems. This paper investigates the use of missing data (MD) techniques with Fuzzy Analogy. More specifically, this study analyze the predictive performance of this analogy-based technique when using toleration, deletion or k-nearest neighbors (KNN) imputation techniques using the Pred(0.25) accuracy criterion and thereafter compares the results with the findings when using the Standardized Accuracy (SA) measure. A total of 756 experiments were conducted involving seven data sets, three MD techniques (toleration, deletion and KNN imputation), three missingness mechanisms (MCAR: missing completely at random, MAR: missing at random, NIM: non-ignorable missing), and MD percentages from 10 percent to 90 percent. The results of accuracy measured in terms of Pred(0.25) confirm the findings of a study which used the SA measure. Moreover, we found that SA and Pred(0.25) measure different aspects of technique performance. Hence, SA is not sufficient to conclude about the technique accuracy and it should be used with other metrics, especially Pred(0.25).","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7849922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Missing Data (MD) is a widespread problem that can affect the ability to use data to construct effective software development effort prediction systems. This paper investigates the use of missing data (MD) techniques with Fuzzy Analogy. More specifically, this study analyze the predictive performance of this analogy-based technique when using toleration, deletion or k-nearest neighbors (KNN) imputation techniques using the Pred(0.25) accuracy criterion and thereafter compares the results with the findings when using the Standardized Accuracy (SA) measure. A total of 756 experiments were conducted involving seven data sets, three MD techniques (toleration, deletion and KNN imputation), three missingness mechanisms (MCAR: missing completely at random, MAR: missing at random, NIM: non-ignorable missing), and MD percentages from 10 percent to 90 percent. The results of accuracy measured in terms of Pred(0.25) confirm the findings of a study which used the SA measure. Moreover, we found that SA and Pred(0.25) measure different aspects of technique performance. Hence, SA is not sufficient to conclude about the technique accuracy and it should be used with other metrics, especially Pred(0.25).
不完全软件项目数据的模糊类比评价
缺失数据(MD)是一个广泛存在的问题,它会影响使用数据构建有效的软件开发工作预测系统的能力。本文研究了模糊类比中缺失数据(MD)技术的应用。更具体地说,本研究使用Pred(0.25)精度标准分析了这种基于类比的技术在使用容忍、删除或k-最近邻(KNN) imputation技术时的预测性能,然后将结果与使用标准化精度(SA)测量时的结果进行了比较。总共进行了756个实验,涉及7个数据集,3种MD技术(耐受、缺失和KNN imputation), 3种缺失机制(MCAR:完全随机缺失,MAR:随机缺失,NIM:不可忽略缺失),MD百分比从10%到90%不等。以Pred(0.25)测量的准确度结果证实了一项使用SA测量的研究结果。此外,我们发现SA和Pred(0.25)衡量的是技术绩效的不同方面。因此,SA不足以得出技术准确性的结论,它应该与其他指标一起使用,特别是Pred(0.25)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信