Modular Neural Networks and Type-2 Fuzzy Logic for Face Recognition

O. Mendoza, Guillermo Licea, P. Melin
{"title":"Modular Neural Networks and Type-2 Fuzzy Logic for Face Recognition","authors":"O. Mendoza, Guillermo Licea, P. Melin","doi":"10.1109/NAFIPS.2007.383912","DOIUrl":null,"url":null,"abstract":"In this paper we present a method for face recognition combining modular neural networks and two interval type-2 fuzzy inference systems (FIS 2) for face recognition. The first FIS 2 is used for edges detection in the training data, and the second one to find the ideal parameters for the Sugeno integral as a decision operator. Fuzzy logic is shown to be a tool that can help improve the results of a neural system facilitating the representation of the human perception.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

In this paper we present a method for face recognition combining modular neural networks and two interval type-2 fuzzy inference systems (FIS 2) for face recognition. The first FIS 2 is used for edges detection in the training data, and the second one to find the ideal parameters for the Sugeno integral as a decision operator. Fuzzy logic is shown to be a tool that can help improve the results of a neural system facilitating the representation of the human perception.
模块化神经网络与2型模糊逻辑在人脸识别中的应用
本文提出了一种将模块化神经网络与两个区间2型模糊推理系统(FIS 2)相结合的人脸识别方法。第一个FIS 2用于训练数据的边缘检测,第二个FIS 2用于寻找Sugeno积分的理想参数作为决策算子。模糊逻辑被证明是一种工具,可以帮助改善神经系统的结果,促进人类感知的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信