{"title":"A Nonstandard Proof of De Finetti’s Theorem for Bernoulli Random Variables","authors":"Irfan Alam","doi":"10.31390/JOSA.1.4.15","DOIUrl":null,"url":null,"abstract":"We give a nonstandard analytic proof of de Finetti's theorem for an exchangeable sequence of Bernoulli random variables. The theorem postulates that such a sequence is uniquely representable as a mixture of iid sequences of Bernoulli random variables. We use combinatorial arguments to show that this probability distribution is induced by a hyperfinite sample mean.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"1976 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/JOSA.1.4.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We give a nonstandard analytic proof of de Finetti's theorem for an exchangeable sequence of Bernoulli random variables. The theorem postulates that such a sequence is uniquely representable as a mixture of iid sequences of Bernoulli random variables. We use combinatorial arguments to show that this probability distribution is induced by a hyperfinite sample mean.