Configuration of the Actor and Critic Network of the Deep Reinforcement Learning controller for Multi-Energy Storage System

Paula Paramo-Balsa, Jose Luis, Rueda Torres, F. Gonzalez-Longatt, P. Palensky, M. Acosta, F. Sanchez, J. Roldan-Fernandez, M. Burgos-Payán
{"title":"Configuration of the Actor and Critic Network of the Deep Reinforcement Learning controller for Multi-Energy Storage System","authors":"Paula Paramo-Balsa, Jose Luis, Rueda Torres, F. Gonzalez-Longatt, P. Palensky, M. Acosta, F. Sanchez, J. Roldan-Fernandez, M. Burgos-Payán","doi":"10.1109/gpecom55404.2022.9815793","DOIUrl":null,"url":null,"abstract":"The computational burden and the time required to train a deep reinforcement learning (DRL) can be appreciable, especially for the particular case of a DRL control used for frequency control of multi-electrical energy storage (MEESS). This paper presents an assessment of four training configurations of the actor and critic network to determine the configuration training that produces the lower computational time, considering the specific case of frequency control of MEESS. The training configuration cases are defined considering two processing units: CPU and GPU and are evaluated considering serial and parallel computing using MATLAB® 2020b Parallel Computing Toolbox. The agent used for this assessment is the Deep Deterministic Policy Gradient (DDPG) agent. The environment represents the dynamic model to provide enhanced frequency response to the power system by controlling the state of charge of energy storage systems. Simulation results demonstrated that the best configuration to reduce the computational time is training both actor and critic network on CPU using parallel computing.","PeriodicalId":441321,"journal":{"name":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/gpecom55404.2022.9815793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The computational burden and the time required to train a deep reinforcement learning (DRL) can be appreciable, especially for the particular case of a DRL control used for frequency control of multi-electrical energy storage (MEESS). This paper presents an assessment of four training configurations of the actor and critic network to determine the configuration training that produces the lower computational time, considering the specific case of frequency control of MEESS. The training configuration cases are defined considering two processing units: CPU and GPU and are evaluated considering serial and parallel computing using MATLAB® 2020b Parallel Computing Toolbox. The agent used for this assessment is the Deep Deterministic Policy Gradient (DDPG) agent. The environment represents the dynamic model to provide enhanced frequency response to the power system by controlling the state of charge of energy storage systems. Simulation results demonstrated that the best configuration to reduce the computational time is training both actor and critic network on CPU using parallel computing.
多储能系统深度强化学习控制器的Actor和Critic网络配置
训练深度强化学习(DRL)所需的计算负担和时间可能是可观的,特别是对于用于多电能存储(MEESS)频率控制的DRL控制的特殊情况。考虑到MEESS频率控制的具体情况,本文对行动者和评论家网络的四种训练配置进行了评估,以确定产生较低计算时间的配置训练。考虑CPU和GPU两个处理单元定义训练配置案例,并使用MATLAB®2020b并行计算工具箱考虑串行和并行计算进行评估。用于此评估的代理是深度确定性策略梯度(DDPG)代理。环境代表动态模型,通过控制储能系统的充电状态为电力系统提供增强的频率响应。仿真结果表明,减少计算时间的最佳配置是使用并行计算在CPU上同时训练参与者和评论家网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信