Research on GAN-based Text Effects Style Transfer

Yinquan Liu, Zhuang Chen
{"title":"Research on GAN-based Text Effects Style Transfer","authors":"Yinquan Liu, Zhuang Chen","doi":"10.1109/ICISCAE52414.2021.9590780","DOIUrl":null,"url":null,"abstract":"With the development of neural style transfer and generative adversarial network, the research of text effect style transfer has appeared. The text effect style transfer aims to render text images with style images to produce text effects images. However, for more complex text, the existing methods will generate unrecognizable font images. Therefore, we propose to add morphological methods to the glyph transformation to limit the degree of glyph transformation, and add distance transformation loss when training the texture network to limit the texture transfer, so as to improve the overall transformation effect. Experiments show that, compared with other existing technologies, our proposed method is more suitable for stylizing complex glyph images.","PeriodicalId":121049,"journal":{"name":"2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCAE52414.2021.9590780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of neural style transfer and generative adversarial network, the research of text effect style transfer has appeared. The text effect style transfer aims to render text images with style images to produce text effects images. However, for more complex text, the existing methods will generate unrecognizable font images. Therefore, we propose to add morphological methods to the glyph transformation to limit the degree of glyph transformation, and add distance transformation loss when training the texture network to limit the texture transfer, so as to improve the overall transformation effect. Experiments show that, compared with other existing technologies, our proposed method is more suitable for stylizing complex glyph images.
基于gan的文本效果风格迁移研究
随着神经风格迁移和生成对抗网络的发展,文本效应风格迁移的研究应运而生。文本效果风格转换的目的是用样式图像渲染文本图像,产生文本效果图像。然而,对于更复杂的文本,现有的方法将产生无法识别的字体图像。因此,我们提出在字形变换中加入形态学方法来限制字形变换的程度,在纹理网络训练时加入距离变换损失来限制纹理转移,从而提高整体变换效果。实验表明,与其他现有技术相比,本文提出的方法更适合于复杂象形图像的风格化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信