J. Partanen, P. Nouchi, J. M. Cohen-Jonathan, R. Hellwarth
{"title":"Effects of temperature on photoconductivity in n-type cubici Bi12SiO20","authors":"J. Partanen, P. Nouchi, J. M. Cohen-Jonathan, R. Hellwarth","doi":"10.1364/pmed.1990.b9","DOIUrl":null,"url":null,"abstract":"In the only study to our knowledge of the photorefractive effect in n-type cubic Bi12SiO20 (n-BSO) at low temperatures (300 to 80 K), optical four-wave mixing via the photorefractive effect was found to decline over one order-of-magnitude as the temperature was lowered from ~ 300 K to below ~ 200 K.1 The mixing returned to normal upon warming. To better understand this unexpected result, we have undertaken both pulsed and dc photoconductivity studies at various temperatures on the same n-BSO crystal, called \"CT1\" (Crystal Technology, Inc., 1984), as well as on other n-BSO crystals. The photocurrent excited by a nanosecond or picosecond optical pulse is known to decay non-exponentially in time, with characteristic times in the nanosecond and microsecond regimes.2 In CT1 we see further long decay tails (~ seconds) at room temperature. However, in another n-BSO crystal called \"SU1\" (Sumitomo Corp., 1986), this long tail is essentially absent.","PeriodicalId":385625,"journal":{"name":"Topical Meeting on Photorefractive Materials, Effects, and Devices II","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting on Photorefractive Materials, Effects, and Devices II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/pmed.1990.b9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the only study to our knowledge of the photorefractive effect in n-type cubic Bi12SiO20 (n-BSO) at low temperatures (300 to 80 K), optical four-wave mixing via the photorefractive effect was found to decline over one order-of-magnitude as the temperature was lowered from ~ 300 K to below ~ 200 K.1 The mixing returned to normal upon warming. To better understand this unexpected result, we have undertaken both pulsed and dc photoconductivity studies at various temperatures on the same n-BSO crystal, called "CT1" (Crystal Technology, Inc., 1984), as well as on other n-BSO crystals. The photocurrent excited by a nanosecond or picosecond optical pulse is known to decay non-exponentially in time, with characteristic times in the nanosecond and microsecond regimes.2 In CT1 we see further long decay tails (~ seconds) at room temperature. However, in another n-BSO crystal called "SU1" (Sumitomo Corp., 1986), this long tail is essentially absent.