Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models

F. Blasques, P. Gorgi, S. J. Koopman, O. Wintenberger
{"title":"Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models","authors":"F. Blasques, P. Gorgi, S. J. Koopman, O. Wintenberger","doi":"10.2139/ssrn.2848819","DOIUrl":null,"url":null,"abstract":"Invertibility conditions for observation-driven time series models often fail to be guaranteed in empirical applications. As a result, the asymptotic theory of maximum likelihood and quasi-maximum likelihood estimators may be compromised. We derive considerably weaker conditions that can be used in practice to ensure the consistency of the maximum likelihood estimator for a wide class of observation-driven time series models. Our consistency results hold for both correctly specified and misspecified models. The practical relevance of the theory is highlighted in a set of empirical examples. We further obtain an asymptotic test and confidence bounds for the unfeasible \" true \" invertibility region of the parameter space.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2848819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

Invertibility conditions for observation-driven time series models often fail to be guaranteed in empirical applications. As a result, the asymptotic theory of maximum likelihood and quasi-maximum likelihood estimators may be compromised. We derive considerably weaker conditions that can be used in practice to ensure the consistency of the maximum likelihood estimator for a wide class of observation-driven time series models. Our consistency results hold for both correctly specified and misspecified models. The practical relevance of the theory is highlighted in a set of empirical examples. We further obtain an asymptotic test and confidence bounds for the unfeasible " true " invertibility region of the parameter space.
观测驱动模型的可行可逆性条件和最大似然估计
在经验应用中,观测驱动时间序列模型的可逆性条件往往不能得到保证。结果,极大似然估计和拟极大似然估计的渐近理论可能被破坏。我们推导了相当弱的条件,可以在实践中使用,以确保对一类广泛的观测驱动时间序列模型的最大似然估计的一致性。我们的一致性结果适用于正确指定和错误指定的模型。这一理论的实际意义在一组实证例子中得到了突出体现。进一步得到了参数空间不可行的“真”可逆性域的渐近检验和置信界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信