Data-Driven Tube-based Model Predictive Control of an Industrial Thickener

Runda Jia, Shulei Zhang, Zhiqi Li, Kang Li
{"title":"Data-Driven Tube-based Model Predictive Control of an Industrial Thickener","authors":"Runda Jia, Shulei Zhang, Zhiqi Li, Kang Li","doi":"10.1109/IAI55780.2022.9976793","DOIUrl":null,"url":null,"abstract":"In this work, a data-driven tube-based model predictive control (MPC) is presented to track the setpoints of the underflow concentration. By defining the terminal admissible set to consider all the possible steady-states, the controller can ensure tracking for all reachable operating setpoints. Besides, a data-driven general polyhedral uncertainty set is constructed by employing the principal component analysis (PCA) technique, which can effectively capture correlations among uncertain variables. Based on the constructed uncertainty set, the feasible region could be enlarged while reducing the conservatism of control performance. In addition, recursive feasibility and stability of the controller can be guaranteed. The effectiveness of the proposed method is verified by tracking problems of the thickening process.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a data-driven tube-based model predictive control (MPC) is presented to track the setpoints of the underflow concentration. By defining the terminal admissible set to consider all the possible steady-states, the controller can ensure tracking for all reachable operating setpoints. Besides, a data-driven general polyhedral uncertainty set is constructed by employing the principal component analysis (PCA) technique, which can effectively capture correlations among uncertain variables. Based on the constructed uncertainty set, the feasible region could be enlarged while reducing the conservatism of control performance. In addition, recursive feasibility and stability of the controller can be guaranteed. The effectiveness of the proposed method is verified by tracking problems of the thickening process.
基于数据驱动管的工业浓缩机模型预测控制
在这项工作中,提出了一种基于数据驱动管的模型预测控制(MPC)来跟踪下流浓度的设定值。通过定义考虑所有可能稳态的终端允许集,控制器可以保证对所有可达的运行设定值进行跟踪。此外,利用主成分分析(PCA)技术构建了一个数据驱动的通用多面体不确定性集,可以有效地捕捉不确定变量之间的相关性。基于构造的不确定性集,可以扩大可行区域,同时降低控制性能的保守性。此外,还可以保证控制器递归的可行性和稳定性。通过对增稠过程的跟踪问题验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信