Consensus Clustering by Weight Optimization of Input Partitions

R. Alguliyev, R. Aliguliyev, L. Sukhostat
{"title":"Consensus Clustering by Weight Optimization of Input Partitions","authors":"R. Alguliyev, R. Aliguliyev, L. Sukhostat","doi":"10.1109/AICT47866.2019.8981718","DOIUrl":null,"url":null,"abstract":"This paper proposes a weighted consensus approach for data clustering, where each input basic clustering method is weighted. The weights are automatically determined by solving an optimization problem. Experiments are carried out on three datasets: NSL-KDD, Forest Cover Type, and Phone Accelerometer datasets. The results show the effectiveness of the proposed approach to Big data clustering compared to single clustering methods.","PeriodicalId":329473,"journal":{"name":"2019 IEEE 13th International Conference on Application of Information and Communication Technologies (AICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT47866.2019.8981718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a weighted consensus approach for data clustering, where each input basic clustering method is weighted. The weights are automatically determined by solving an optimization problem. Experiments are carried out on three datasets: NSL-KDD, Forest Cover Type, and Phone Accelerometer datasets. The results show the effectiveness of the proposed approach to Big data clustering compared to single clustering methods.
基于输入分区权重优化的一致性聚类
本文提出了一种数据聚类的加权一致性方法,其中对每个输入的基本聚类方法进行加权。通过求解优化问题自动确定权重。在NSL-KDD、Forest Cover Type和Phone Accelerometer 3个数据集上进行了实验。结果表明,与单一聚类方法相比,该方法对大数据聚类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信