List of Schemes

T. Stolz, N. Levkovych, Aina Urdze, Julia Nintemann, Maja Robbers
{"title":"List of Schemes","authors":"T. Stolz, N. Levkovych, Aina Urdze, Julia Nintemann, Maja Robbers","doi":"10.1515/9783110539516-015","DOIUrl":null,"url":null,"abstract":"Scheme 3.1. Schematic representation of electronic wave-flinction extending towards shell which results in the slow electron cooling observed for CdTe/ZnS NCs 98 Scheme 3.2. The formation of abrupt and smooth interfacial alloyed layer in CdTe/ZnSe core/shell NCs at different reaction temperature 113 Scheme 4.1. Plausible mechanism for CdSe/PbSe Janus HNC formation, (a-b) The CdSe NC reaches its maximum size in 2-5 minutes of growth after which Cd\" to Pb\" cation exchange starts to take place. The first layer of PbSe might form through ligand assisted cation exchange mechanism.'\" (c-d) Following this the Cd~\" to Pb\"* exchange will proceed through vacancy assisted cation migration mechanism.''''\" Once a Cd-vacancy forms at the surface, it will migrate to the CdSe/PbSe interface and is filled up by a Pb-atom. The Pb-vacancy diffuses to the surface recombining with Pb of a Pb-oleate molecule. This layer-by-layer replacement of CdSe continues until the reaction stops 130 Scheme 4.2. The quasi type-II alignment with epitaxy between two phases is represented for D30m CdSe/PbSe Janus NCs. The electron is distributed throughout the HNC whereas the hole localizes on the PbSe domain 140 Scheme 6.1 (A) Schematic of solar cell fabrication process. After depositing MPA capped QDs into TiOi CdS was coated through SILAR followed by partial cation exchange (CE) with Cu\" to form the hole transporting CuS layer. Prolonged cation exchange decreases the PCE as shown in Figure 6.7. The major three recombination processes are from QD CB to redox electrolyte (process 1); from TiOo CB to redox electrolyte (process 2) and from TIOT CB to QD VB (process 3). The CdS passivation can prevent process 1 and 2 by passivating the QD and TiOo NPs. The CuS layer facilitates hole transfer to redox electrolyte thus prevents process 3 also. (B) Band energy diagram for TiOo/CdSSea/CdS/CuS/electrolyte to demonstrate facile electron injection from QD to the CB of TiO: and hole transfer from VB to electrolyte throgh CuS. The band energies of CdSSea was determined from CV, whereas for CdS and CuS values reported in literature were taken.'^ 190","PeriodicalId":303346,"journal":{"name":"Here – Hither – Hence and Related Categories","volume":"2020 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Here – Hither – Hence and Related Categories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110539516-015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scheme 3.1. Schematic representation of electronic wave-flinction extending towards shell which results in the slow electron cooling observed for CdTe/ZnS NCs 98 Scheme 3.2. The formation of abrupt and smooth interfacial alloyed layer in CdTe/ZnSe core/shell NCs at different reaction temperature 113 Scheme 4.1. Plausible mechanism for CdSe/PbSe Janus HNC formation, (a-b) The CdSe NC reaches its maximum size in 2-5 minutes of growth after which Cd" to Pb" cation exchange starts to take place. The first layer of PbSe might form through ligand assisted cation exchange mechanism.'" (c-d) Following this the Cd~" to Pb"* exchange will proceed through vacancy assisted cation migration mechanism.''''" Once a Cd-vacancy forms at the surface, it will migrate to the CdSe/PbSe interface and is filled up by a Pb-atom. The Pb-vacancy diffuses to the surface recombining with Pb of a Pb-oleate molecule. This layer-by-layer replacement of CdSe continues until the reaction stops 130 Scheme 4.2. The quasi type-II alignment with epitaxy between two phases is represented for D30m CdSe/PbSe Janus NCs. The electron is distributed throughout the HNC whereas the hole localizes on the PbSe domain 140 Scheme 6.1 (A) Schematic of solar cell fabrication process. After depositing MPA capped QDs into TiOi CdS was coated through SILAR followed by partial cation exchange (CE) with Cu" to form the hole transporting CuS layer. Prolonged cation exchange decreases the PCE as shown in Figure 6.7. The major three recombination processes are from QD CB to redox electrolyte (process 1); from TiOo CB to redox electrolyte (process 2) and from TIOT CB to QD VB (process 3). The CdS passivation can prevent process 1 and 2 by passivating the QD and TiOo NPs. The CuS layer facilitates hole transfer to redox electrolyte thus prevents process 3 also. (B) Band energy diagram for TiOo/CdSSea/CdS/CuS/electrolyte to demonstrate facile electron injection from QD to the CB of TiO: and hole transfer from VB to electrolyte throgh CuS. The band energies of CdSSea was determined from CV, whereas for CdS and CuS values reported in literature were taken.'^ 190
计划一览表
3.1方案。在CdTe/ZnS NCs 98 Scheme 3.2中观察到的导致电子缓慢冷却的电子波向壳层延伸的示意图。不同反应温度下CdTe/ZnSe核壳NCs中突兀和光滑界面合金层的形成。CdSe/PbSe Janus HNC形成的可能机制,(a-b) CdSe NC在生长2-5分钟内达到最大尺寸,之后Cd“到Pb”阳离子交换开始发生。第一层PbSe可能通过配体辅助阳离子交换机制形成。’”(c-d)之后,Cd~”到Pb”*的交换将通过空位辅助阳离子迁移机制进行。''''“一旦cd空位在表面形成,它将迁移到CdSe/PbSe界面,并被一个pb原子填充。在油酸铅分子中,铅空位扩散到与铅复合的表面。这种逐层替换CdSe的过程一直持续到反应停止(Scheme 4.2)。D30m CdSe/PbSe Janus NCs具有两相外延的准ii型取向。电子分布在整个HNC中,而空穴则定位在PbSe结构域上。将MPA封顶的量子点沉积在TiOi CdS上,通过SILAR涂覆,然后与Cu '进行部分阳离子交换(CE),形成Cu的空穴层。长时间的阳离子交换降低了PCE,如图6.7所示。三种主要的复合过程是:从QD CB到氧化还原电解质(过程1);从TiOo CB到氧化还原电解质(过程2)和从TIOT CB到QD VB(过程3)。CdS钝化可以通过钝化QD和TiOo NPs来阻止过程1和2。cu层有利于空穴转移到氧化还原电解质,从而也阻止了过程3。(B) TiOo/CdSSea/CdS/ cu /电解质的能带能图,显示了TiOo的QD向CB的电子注入以及VB通过cu向电解质的空穴转移。CdSSea的能带能量由CV测定,而cd和cu的能带能量则取文献报道的值。^ 190年
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信