{"title":"Data Mining Approach for the Early Risk Assessment of Gestational Diabetes Mellitus","authors":"Saeed Rouhani, Maryam MirSharif","doi":"10.4018/IJKDB.2018010101","DOIUrl":null,"url":null,"abstract":"Inthisarticle,theauthorsproposedthemethodofmedicaldiagnosisingestationaldiabetesmellitus (GDM)intheinitialstagesofpregnancytofacilitatediagnosesandpreventtheaffection.Nowadays, inindustrialmodernworldwithchanginglifestylealimentalmannertheincidenceofcomplexdisease hasbeenincreasinglygrown.GDMisachronicdiseaseandoneofthemajorhealthproblemsthat isoftendiagnosedinmiddleorlateperiodofpregnancy,whenitistoolateforprediction.Ifitis nottreated,itwillmakeseriouscomplicationsandvarioussideeffectsformotherandchild.This articleisdesignedforansweringtothequestionof:“Whatisthebestapproachintimelyandaccurate predictionofGDM?”Thus,theartificialneuralnetworkanddecisiontreeareproposedtoreducethe amountoferrorandthelevelofaccuracyinanticipatingandimprovingtheprecisionofprediction. Theresultsillustratethatintelligentdiagnosissystemscanimprovethequalityofhealthcare,timely prediction,prevention,andknowledgediscoveryinbioinformatics. KEywoRDS Artificial Neural Network, Data Mining, Decision Tree, GDM, Risk Assessment","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJKDB.2018010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
妊娠期糖尿病早期风险评估的数据挖掘方法
Inthisarticle、theauthorsproposedthemethodofmedicaldiagnosisingestationaldiabetesmellitus (GDM)intheinitialstagesofpregnancytofacilitatediagnosesandpreventtheaffection。Nowadays, inindustrialmodernworldwithchanginglifestylealimentalmannertheincidenceofcomplexdisease hasbeenincreasinglygrown。GDMisachronicdiseaseandoneofthemajorhealthproblemsthat isoftendiagnosedinmiddleorlateperiodofpregnancy,whenitistoolateforprediction。Ifitis nottreated,itwillmakeseriouscomplicationsandvarioussideeffectsformotherandchild。This articleisdesignedforansweringtothequestionof:“Whatisthebestapproachintimelyandaccurate predictionofGDM?”Thus,theartificialneuralnetworkanddecisiontreeareproposedtoreducethe amountoferrorandthelevelofaccuracyinanticipatingandimprovingtheprecisionofprediction。Theresultsillustratethatintelligentdiagnosissystemscanimprovethequalityofhealthcare,timely预测,prevention,andknowledgediscoveryinbioinformatics。关键词:人工神经网络,数据挖掘,决策树,GDM,风险评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。