Python Array API Standard: Toward Array Interoperability in the Scientific Python Ecosystem

Aaron Meurer, Athan Reines, R. Gommers, Yao-Lung Fang, John Kirkham, Matthew Barber, Stephan Hoyer, Andreas Müller, Sheng Zha, Saul Shanabrook, S. Gacha, Mario Lezcano-Casado, Thomas Fan, Tyler Reddy, Alexandre Passos, Hyukjin Kwon, T. Oliphant, Consortium Standards
{"title":"Python Array API Standard: Toward Array Interoperability in the Scientific Python Ecosystem","authors":"Aaron Meurer, Athan Reines, R. Gommers, Yao-Lung Fang, John Kirkham, Matthew Barber, Stephan Hoyer, Andreas Müller, Sheng Zha, Saul Shanabrook, S. Gacha, Mario Lezcano-Casado, Thomas Fan, Tyler Reddy, Alexandre Passos, Hyukjin Kwon, T. Oliphant, Consortium Standards","doi":"10.25080/gerudo-f2bc6f59-001","DOIUrl":null,"url":null,"abstract":"—The Python array API standard specifies standardized application programming interfaces (APIs) and behaviors for array and tensor objects and operations as commonly found in libraries such as NumPy [1], CuPy [2], PyTorch [3], JAX [4], TensorFlow [5], Dask [6], and MXNet [7]. The establishment and subsequent adoption of the standard aims to reduce ecosystem fragmentation and facilitate array library interoperability in user code and among array-consuming libraries, such as scikit-learn [8] and SciPy [9]. A key benefit of array interoperability for downstream consumers of the standard is device agnosticism, whereby previously CPU-bound implementations can more readily leverage hardware acceleration via graphics processing units (GPUs), tensor processing units (TPUs), and other accelerator devices. In this paper, we first introduce the Consortium for Python Data API Standards and define the scope of the array API standard. We then discuss the current status of standardization and associated tooling (including a test suite and compatibility layer). We conclude by outlining plans for future work.","PeriodicalId":364654,"journal":{"name":"Proceedings of the Python in Science Conference","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Python in Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25080/gerudo-f2bc6f59-001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

—The Python array API standard specifies standardized application programming interfaces (APIs) and behaviors for array and tensor objects and operations as commonly found in libraries such as NumPy [1], CuPy [2], PyTorch [3], JAX [4], TensorFlow [5], Dask [6], and MXNet [7]. The establishment and subsequent adoption of the standard aims to reduce ecosystem fragmentation and facilitate array library interoperability in user code and among array-consuming libraries, such as scikit-learn [8] and SciPy [9]. A key benefit of array interoperability for downstream consumers of the standard is device agnosticism, whereby previously CPU-bound implementations can more readily leverage hardware acceleration via graphics processing units (GPUs), tensor processing units (TPUs), and other accelerator devices. In this paper, we first introduce the Consortium for Python Data API Standards and define the scope of the array API standard. We then discuss the current status of standardization and associated tooling (including a test suite and compatibility layer). We conclude by outlining plans for future work.
Python数组API标准:面向科学Python生态系统中的数组互操作性
- Python数组API标准为数组和张量对象和操作指定了标准化的应用程序编程接口(API)和行为,如NumPy [1], CuPy [2], PyTorch [3], JAX [4], TensorFlow [5], Dask[6]和MXNet[7]等库。该标准的建立和后续采用旨在减少生态系统的碎片化,促进数组库在用户代码中以及在数组消耗库之间的互操作性,如scikit-learn[8]和SciPy[9]。对于该标准的下游消费者来说,阵列互操作性的一个关键好处是设备不可知性,因此以前的cpu绑定实现可以更容易地通过图形处理单元(gpu)、张量处理单元(tpu)和其他加速器设备利用硬件加速。在本文中,我们首先介绍了Python数据API标准联盟,并定义了数组API标准的范围。然后我们讨论标准化和相关工具(包括测试套件和兼容层)的当前状态。最后,我们概述了今后工作的计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信