Origami Metasurface Hologram Based on Deep Learning

Kangri Wang, Da Shuang Liao, Hao Wang
{"title":"Origami Metasurface Hologram Based on Deep Learning","authors":"Kangri Wang, Da Shuang Liao, Hao Wang","doi":"10.1109/CSRSWTC56224.2022.10098390","DOIUrl":null,"url":null,"abstract":"An origami metasurface structure is designed for hologram imaging based on deep learning. The metasurface unit cell is folded to form an origami structure, which is a straightforward way to change metasurface shape. The transmission electromagnetic performance of the unit cell is steady while the angle of incident waves changes from -60 to 60 degrees. In this paper, the folded angle of 45 degree is chosen. Every four cells fold in different ways to form a supercell. The total amounts of supercells are $30\\times 30=900$. Next, deep learning is utilized to compute the compensation phases of 3600 elements for generating hologram imaging. These phases determine the rotation angles of the unit cells. A left-handed circular polarized (LHCP) wave transmits the hologram structure and subsequently generates an image with the shape of the letter J on the imaging plane. This is validated by the simulations in the commercial electromagnetic software CST.","PeriodicalId":198168,"journal":{"name":"2022 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSRSWTC56224.2022.10098390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An origami metasurface structure is designed for hologram imaging based on deep learning. The metasurface unit cell is folded to form an origami structure, which is a straightforward way to change metasurface shape. The transmission electromagnetic performance of the unit cell is steady while the angle of incident waves changes from -60 to 60 degrees. In this paper, the folded angle of 45 degree is chosen. Every four cells fold in different ways to form a supercell. The total amounts of supercells are $30\times 30=900$. Next, deep learning is utilized to compute the compensation phases of 3600 elements for generating hologram imaging. These phases determine the rotation angles of the unit cells. A left-handed circular polarized (LHCP) wave transmits the hologram structure and subsequently generates an image with the shape of the letter J on the imaging plane. This is validated by the simulations in the commercial electromagnetic software CST.
基于深度学习的折纸超表面全息图
设计了一种基于深度学习的全息成像折纸超表面结构。将超表面单元细胞折叠形成折纸结构,这是改变超表面形状的一种直接方法。当入射波的角度在-60 ~ 60度范围内变化时,单体电池的传输电磁性能稳定。本文选择45度的折叠角。每四个细胞以不同的方式折叠形成一个超级单体。超级细胞的总数量是30美元× 30=900美元。接下来,利用深度学习计算3600个元件的补偿相位,生成全息成像。这些相位决定了单元格的旋转角度。左旋圆偏振波(LHCP)透射全息图结构,随后在成像平面上产生字母J形状的图像。在商用电磁软件CST中进行了仿真验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信