Optimizing the parameters of turbo product codes using genetic algorithms

A. Mahran
{"title":"Optimizing the parameters of turbo product codes using genetic algorithms","authors":"A. Mahran","doi":"10.1109/AERO.2017.7943565","DOIUrl":null,"url":null,"abstract":"When selecting an error correcting code, it is desired to fulfill a data error rate criterion, but also the code that is selected does this without being excessively complicated. For specific channel conditions it is quite difficult to optimize the error correcting code parameters' analytically. This work proposes multi-objective optimization by applying the Genetic Algorithm (GA) in the selection of Turbo Product Codes (TPC) parameters' that are used for transmission of data over an AWGN channel. The results show that the GA is capable of converging to a set of sensible solutions and giving the pareto-optimum set for error performance against code complexity.","PeriodicalId":224475,"journal":{"name":"2017 IEEE Aerospace Conference","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2017.7943565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

When selecting an error correcting code, it is desired to fulfill a data error rate criterion, but also the code that is selected does this without being excessively complicated. For specific channel conditions it is quite difficult to optimize the error correcting code parameters' analytically. This work proposes multi-objective optimization by applying the Genetic Algorithm (GA) in the selection of Turbo Product Codes (TPC) parameters' that are used for transmission of data over an AWGN channel. The results show that the GA is capable of converging to a set of sensible solutions and giving the pareto-optimum set for error performance against code complexity.
利用遗传算法优化涡轮产品代码的参数
在选择纠错码时,希望满足数据错误率标准,但所选择的代码也不会过于复杂。对于特定的信道条件,解析优化纠错码参数是相当困难的。这项工作提出了多目标优化,通过应用遗传算法(GA)来选择涡轮产品代码(TPC)参数,这些参数用于在AWGN信道上传输数据。结果表明,该遗传算法能够收敛到一组合理的解,并给出针对代码复杂度的错误性能的帕累托最优集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信