The closed-form frequency-independent solution for physical optics integrals on conducting quadratic surfaces using rectangular meshing

Farzad Mokhtari Koushyar, A. A. Shishegar
{"title":"The closed-form frequency-independent solution for physical optics integrals on conducting quadratic surfaces using rectangular meshing","authors":"Farzad Mokhtari Koushyar, A. A. Shishegar","doi":"10.1109/ISTEL.2014.7000684","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a closed-form frequency-independent solution for highly oscillatory Physical Optics (PO) integrals on a quadratic surface. These integrals are highly oscillatory integrals with second order polynomial phase and amplitude functions. First, using an affine transform, the quadratic complete form of the phase function is converted into a simple canonical form. Then, the resulted integration domain is divided to some rectangles. Finally, the closed-form solution is represented on each rectangle. Actually, by adjusting the integrand and the integration domain, we could use the closed-form solution. The accuracy and computation time efficiency of proposed method are studied using some numerical examples.","PeriodicalId":417179,"journal":{"name":"7'th International Symposium on Telecommunications (IST'2014)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7'th International Symposium on Telecommunications (IST'2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTEL.2014.7000684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a closed-form frequency-independent solution for highly oscillatory Physical Optics (PO) integrals on a quadratic surface. These integrals are highly oscillatory integrals with second order polynomial phase and amplitude functions. First, using an affine transform, the quadratic complete form of the phase function is converted into a simple canonical form. Then, the resulted integration domain is divided to some rectangles. Finally, the closed-form solution is represented on each rectangle. Actually, by adjusting the integrand and the integration domain, we could use the closed-form solution. The accuracy and computation time efficiency of proposed method are studied using some numerical examples.
用矩形网格法求解导电二次曲面上物理光学积分的闭式频率无关解
在本文中,我们提出了二次曲面上高振荡物理光学(PO)积分的闭式频率无关解。这些积分是具有二阶多项式相位和振幅函数的高度振荡积分。首先,利用仿射变换,将相位函数的二次完备形式转换为简单标准形式。然后,将得到的积分域划分为若干矩形。最后,在每个矩形上表示封闭形式的解。实际上,通过调整被积函数和积分域,我们可以使用封闭解。通过算例研究了该方法的精度和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信