A new hardware implementation approach of BNNs based on nonlinear 2T2R synaptic cell

Z. Zhou, P. Huang, Y. Xiang, W. Shen, Y. Zhao, Y. Feng, B. Gao, H. Wu, H. Qian, L. Liu, X. Zhang, X. Liu, J. Kang
{"title":"A new hardware implementation approach of BNNs based on nonlinear 2T2R synaptic cell","authors":"Z. Zhou, P. Huang, Y. Xiang, W. Shen, Y. Zhao, Y. Feng, B. Gao, H. Wu, H. Qian, L. Liu, X. Zhang, X. Liu, J. Kang","doi":"10.1109/IEDM.2018.8614642","DOIUrl":null,"url":null,"abstract":"For the first time, we propose a new hardware implementation approach which can utilize the non-linear synaptic cells to build a Binarized-Neural-Networks (BNNs) for online training. A 2T2R-based synaptic cell is designed and demonstrated by the fabricated RRAM array to achieve the basic functions of synapse in BNNs: binary weight (sign ($W$)) reading and analog weight updating $(W+\\Delta W)$. The performance of BNNs based on 2T2R synaptic cells is evaluated by MNIST, and the recognition accuracy of 97.4% can be achieved. A novel refresh operation is proposed to enhance the network performance.","PeriodicalId":152963,"journal":{"name":"2018 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2018.8614642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

For the first time, we propose a new hardware implementation approach which can utilize the non-linear synaptic cells to build a Binarized-Neural-Networks (BNNs) for online training. A 2T2R-based synaptic cell is designed and demonstrated by the fabricated RRAM array to achieve the basic functions of synapse in BNNs: binary weight (sign ($W$)) reading and analog weight updating $(W+\Delta W)$. The performance of BNNs based on 2T2R synaptic cells is evaluated by MNIST, and the recognition accuracy of 97.4% can be achieved. A novel refresh operation is proposed to enhance the network performance.
一种基于非线性2T2R突触细胞的神经网络硬件实现方法
本文首次提出了一种新的硬件实现方法,利用非线性突触细胞构建用于在线训练的二值化神经网络(bnn)。利用RRAM阵列设计并演示了基于2t2r的突触单元,实现了bnn中突触的基本功能:二进制权值(sign ($W$))读取和模拟权值更新$(W+\Delta W)$。通过MNIST对基于2T2R突触细胞的神经网络进行性能评估,识别准确率达到97.4%。为了提高网络性能,提出了一种新的刷新操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信