Real-time High Performance Anomaly Detection over Data Streams: Grand Challenge

Dimitrije Jankov, Sourav Sikdar, Rohan Mukherjee, Kia Teymourian, C. Jermaine
{"title":"Real-time High Performance Anomaly Detection over Data Streams: Grand Challenge","authors":"Dimitrije Jankov, Sourav Sikdar, Rohan Mukherjee, Kia Teymourian, C. Jermaine","doi":"10.1145/3093742.3095102","DOIUrl":null,"url":null,"abstract":"Real-time analytics over data streams are crucial for a wide range of use cases in industry and research. Today's sensor systems can produce high throughput data streams that have to be analyzed in real-time. One important analytic task is anomaly or outlier detection from the streaming data. In many industry applications, sensing devices produce a data stream that can be monitored to know the correct operation of industry devices and consequently avoid damages by triggering reactions in real-time. While anomaly detection is a well-studied topic in data mining, the real-time high-performance anomaly detection from big data streams require special studies and well-optimized implementation. This paper presents our implementation of a real-time anomaly detection system over data streams. We outline details of our two separate implementations using the Java and C++ programming languages, and provide technical details about the data processing pipelines. We report experimental results and describe performance tuning strategies.","PeriodicalId":325666,"journal":{"name":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3093742.3095102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Real-time analytics over data streams are crucial for a wide range of use cases in industry and research. Today's sensor systems can produce high throughput data streams that have to be analyzed in real-time. One important analytic task is anomaly or outlier detection from the streaming data. In many industry applications, sensing devices produce a data stream that can be monitored to know the correct operation of industry devices and consequently avoid damages by triggering reactions in real-time. While anomaly detection is a well-studied topic in data mining, the real-time high-performance anomaly detection from big data streams require special studies and well-optimized implementation. This paper presents our implementation of a real-time anomaly detection system over data streams. We outline details of our two separate implementations using the Java and C++ programming languages, and provide technical details about the data processing pipelines. We report experimental results and describe performance tuning strategies.
数据流上的实时高性能异常检测:重大挑战
数据流的实时分析对于工业和研究中的广泛用例至关重要。今天的传感器系统可以产生高吞吐量的数据流,必须实时分析。一项重要的分析任务是从流数据中检测异常或离群值。在许多工业应用中,传感设备产生可以监控的数据流,以了解工业设备的正确操作,从而通过实时触发反应来避免损坏。异常检测是数据挖掘领域研究较多的一个课题,但大数据流的实时高性能异常检测需要专门的研究和优化实现。本文介绍了一个基于数据流的实时异常检测系统的实现。我们概述了使用Java和c++编程语言的两个独立实现的细节,并提供了有关数据处理管道的技术细节。我们报告了实验结果并描述了性能调优策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信