Finite-State Machines for Mining Patterns in Very Large Text Repositories

Wojciech Skut
{"title":"Finite-State Machines for Mining Patterns in Very Large Text Repositories","authors":"Wojciech Skut","doi":"10.3233/978-1-58603-975-2-23","DOIUrl":null,"url":null,"abstract":"The emergence of WWW search engines since the 1990s has changed the scale of many natural language processing applications. Text mining, information extraction and related tasks can now be applied to tens of billions of documents, which sets new efficiency standards for NLP algorithms. Finite-state machines are an obvious choice of a formal framework for such applications. However, the scale of the problem (size of the searchable corpus, number of patterns to be matched) often poses a problem even to well-established finite-state string matching techniques. In my presentation, I will focus on the experience gained in the implementation a finite-state matching library optimized for searching large amounts of complex patterns in a WWW-scale repository of documents. Both algorithmic and implementation-related aspects of the task will be discussed. The library is based on OpenFST.","PeriodicalId":286427,"journal":{"name":"Finite-State Methods and Natural Language Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite-State Methods and Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-58603-975-2-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The emergence of WWW search engines since the 1990s has changed the scale of many natural language processing applications. Text mining, information extraction and related tasks can now be applied to tens of billions of documents, which sets new efficiency standards for NLP algorithms. Finite-state machines are an obvious choice of a formal framework for such applications. However, the scale of the problem (size of the searchable corpus, number of patterns to be matched) often poses a problem even to well-established finite-state string matching techniques. In my presentation, I will focus on the experience gained in the implementation a finite-state matching library optimized for searching large amounts of complex patterns in a WWW-scale repository of documents. Both algorithmic and implementation-related aspects of the task will be discussed. The library is based on OpenFST.
在超大型文本库中挖掘模式的有限状态机
自20世纪90年代以来,万维网搜索引擎的出现改变了许多自然语言处理应用的规模。文本挖掘、信息提取和相关任务现在可以应用于数百亿的文档,这为NLP算法设定了新的效率标准。对于此类应用程序,有限状态机显然是正式框架的选择。然而,问题的规模(可搜索语料库的大小,要匹配的模式的数量)经常会给建立良好的有限状态字符串匹配技术带来问题。在我的演讲中,我将重点介绍在实现有限状态匹配库中获得的经验,该库针对在www级文档存储库中搜索大量复杂模式进行了优化。将讨论该任务的算法和实现相关方面。该库基于OpenFST。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信