Multiresolution approaches to representation and visualization of large influenza virus sequence datasets

L. Zaslavsky, Yīmíng Bào, T. Tatusova
{"title":"Multiresolution approaches to representation and visualization of large influenza virus sequence datasets","authors":"L. Zaslavsky, Yīmíng Bào, T. Tatusova","doi":"10.1109/BIBMW.2007.4425408","DOIUrl":null,"url":null,"abstract":"Rapid growth of the amount of genome sequence data requires enhancing exploratory analysis tools, with analysis being performed in a fast and robust manner. Users need data representations serving different purposes: from seeing overall structure and data coverage to evolutionary processes during a particular season. Our approach to the problem is in constructing hierarchies of data representations, and providing users with representations adaptable to specific goals. It can be done efficiently because the structure of a typical influenza dataset is characterized by low estimated values of the Kolmogorov (box) dimension. Multi-scale methodologies allow interactive visual representation of the dataset and accelerate computations by importance sampling. Our tree visualization approach is based on a subtree aggregation with subscale resolution. It allows interactive refinements and coarsening of subtree views. For importance sampling large influenza datasets, we construct sets of well-scattered points (e-nets). While a tree build for a global sample provides a coarse-level representation of the whole dataset, it can be complemented by trees showing more details in chosen areas. To reflect both global dataset structure and local details correctly, we perform local refinement gradually, using a multiscale hierarchy of e-nets. Our hierarchical representations allow fast metadata searching.","PeriodicalId":260286,"journal":{"name":"2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2007.4425408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Rapid growth of the amount of genome sequence data requires enhancing exploratory analysis tools, with analysis being performed in a fast and robust manner. Users need data representations serving different purposes: from seeing overall structure and data coverage to evolutionary processes during a particular season. Our approach to the problem is in constructing hierarchies of data representations, and providing users with representations adaptable to specific goals. It can be done efficiently because the structure of a typical influenza dataset is characterized by low estimated values of the Kolmogorov (box) dimension. Multi-scale methodologies allow interactive visual representation of the dataset and accelerate computations by importance sampling. Our tree visualization approach is based on a subtree aggregation with subscale resolution. It allows interactive refinements and coarsening of subtree views. For importance sampling large influenza datasets, we construct sets of well-scattered points (e-nets). While a tree build for a global sample provides a coarse-level representation of the whole dataset, it can be complemented by trees showing more details in chosen areas. To reflect both global dataset structure and local details correctly, we perform local refinement gradually, using a multiscale hierarchy of e-nets. Our hierarchical representations allow fast metadata searching.
大型流感病毒序列数据集的多分辨率表示和可视化方法
基因组序列数据量的快速增长需要增强探索性分析工具,以快速和稳健的方式进行分析。用户需要满足不同目的的数据表示:从查看整体结构和数据覆盖到特定季节的演变过程。我们解决这个问题的方法是构建数据表示的层次结构,并为用户提供适合特定目标的表示。这可以有效地完成,因为典型流感数据集的结构特点是科尔莫戈罗夫(箱)维的估定值较低。多尺度方法允许数据集的交互式可视化表示,并通过重要性采样加速计算。我们的树可视化方法是基于具有亚尺度分辨率的子树聚合。它允许对子树视图进行交互细化和粗化。对于重要采样大型流感数据集,我们构建了分散良好的点集(e-nets)。虽然为全局样本构建的树提供了整个数据集的粗略表示,但它可以通过在选定区域显示更多细节的树来补充。为了正确反映全局数据集结构和局部细节,我们使用e-nets的多尺度层次结构逐步进行局部细化。我们的分层表示允许快速的元数据搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信