A Contextual Anomaly Detection Approach to Discover Zero-Day Attacks

Ahmed Aleroud, George Karabatis
{"title":"A Contextual Anomaly Detection Approach to Discover Zero-Day Attacks","authors":"Ahmed Aleroud, George Karabatis","doi":"10.1109/CyberSecurity.2012.12","DOIUrl":null,"url":null,"abstract":"There is a considerable interest in developing techniques to detect zero-day (unknown) cyber-attacks, and considering context is a promising approach. This paper describes a contextual misuse approach combined with an anomaly detection technique to detect zero-day cyber attacks. The contextual misuse detection utilizes similarity with attack context profiles, and the anomaly detection technique identifies new types of attacks using the One Class Nearest Neighbor (1-NN) algorithm. Experimental results on the NSL-KDD intrusion detection dataset have shown that the proposed approach is quite effective in detecting zero-day attacks.","PeriodicalId":162858,"journal":{"name":"2012 International Conference on Cyber Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Cyber Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberSecurity.2012.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

There is a considerable interest in developing techniques to detect zero-day (unknown) cyber-attacks, and considering context is a promising approach. This paper describes a contextual misuse approach combined with an anomaly detection technique to detect zero-day cyber attacks. The contextual misuse detection utilizes similarity with attack context profiles, and the anomaly detection technique identifies new types of attacks using the One Class Nearest Neighbor (1-NN) algorithm. Experimental results on the NSL-KDD intrusion detection dataset have shown that the proposed approach is quite effective in detecting zero-day attacks.
一种发现零日攻击的上下文异常检测方法
人们对开发检测零日(未知)网络攻击的技术相当感兴趣,考虑上下文是一种很有前途的方法。本文描述了一种结合异常检测技术的上下文误用方法来检测零日网络攻击。上下文误用检测利用与攻击上下文轮廓的相似性,异常检测技术使用一类最近邻(1-NN)算法识别新的攻击类型。在NSL-KDD入侵检测数据集上的实验结果表明,该方法对检测零日攻击是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信