Analysis of a near-metric TSP approximation algorithm

S. Krug
{"title":"Analysis of a near-metric TSP approximation algorithm","authors":"S. Krug","doi":"10.1051/ita/2013040","DOIUrl":null,"url":null,"abstract":"The traveling salesman problem (TSP) is one of the most fundamental optimization problems. We consider the β -metric traveling salesman problem (Δ β -TSP), i.e. , the TSP restricted to graphs satisfying the β -triangle inequality c ({v,w }) ≤ β (c ({v,u }) + c ({u,w })), for some cost function c and any three vertices u,v,w . The well-known path matching Christofides algorithm (PMCA) guarantees an approximation ratio of 3β 2 /2 and is the best known algorithm for the Δ β -TSP, for 1 ≤ β  ≤ 2. We provide a complete analysis of the algorithm. First, we correct an error in the original implementation that may produce an invalid solution. Using a worst-case example, we then show that the algorithm cannot guarantee a better approximation ratio. The example can also be used for the PMCA variants for the Hamiltonian path problem with zero and one prespecified endpoints. For two prespecified endpoints, we cannot reuse the example, but we construct another worst-case example to show the optimality of the analysis also in this case.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2013040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The traveling salesman problem (TSP) is one of the most fundamental optimization problems. We consider the β -metric traveling salesman problem (Δ β -TSP), i.e. , the TSP restricted to graphs satisfying the β -triangle inequality c ({v,w }) ≤ β (c ({v,u }) + c ({u,w })), for some cost function c and any three vertices u,v,w . The well-known path matching Christofides algorithm (PMCA) guarantees an approximation ratio of 3β 2 /2 and is the best known algorithm for the Δ β -TSP, for 1 ≤ β  ≤ 2. We provide a complete analysis of the algorithm. First, we correct an error in the original implementation that may produce an invalid solution. Using a worst-case example, we then show that the algorithm cannot guarantee a better approximation ratio. The example can also be used for the PMCA variants for the Hamiltonian path problem with zero and one prespecified endpoints. For two prespecified endpoints, we cannot reuse the example, but we construct another worst-case example to show the optimality of the analysis also in this case.
一种近度量TSP逼近算法的分析
旅行商问题(TSP)是最基本的优化问题之一。我们考虑β -度量旅行商问题(Δ β -TSP),即TSP限制于满足β -三角形不等式c ({v,w})≤β (c ({v,u}) + c ({u,w}))的图,对于某个代价函数c和任意三个顶点u,v,w。众所周知的路径匹配Christofides算法(PMCA)保证了3β 2 /2的近似比,并且是Δ β -TSP最著名的算法,当1≤β≤2时。我们提供了一个完整的算法分析。首先,我们纠正原始实现中可能产生无效解决方案的错误。通过一个最坏情况的例子,我们证明了该算法不能保证一个更好的近似比。该示例还可用于具有零和一个预先指定端点的哈密顿路径问题的PMCA变体。对于两个预先指定的端点,我们不能重用示例,但我们构造另一个最坏情况示例,以在这种情况下显示分析的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信