Facial Expression Recognition in Videos: An CNN-LSTM based Model for Video Classification

Muhammad Abdullah, Mobeen Ahmad, Dongil Han
{"title":"Facial Expression Recognition in Videos: An CNN-LSTM based Model for Video Classification","authors":"Muhammad Abdullah, Mobeen Ahmad, Dongil Han","doi":"10.1109/ICEIC49074.2020.9051332","DOIUrl":null,"url":null,"abstract":"Facial Expressions are an integral part of human communication. Therefore, correct classification of facial expression in image and video data has been an important quest for researchers and software development industry. In this paper we propose the video classification method using Recurrent Neural Networks (RNN) in addition to Convolution Neural Networks (CNN) to capture temporal as well spatial features of a video sequence. The methodology is tested on The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS). Since no other results were available on this dataset using only visual analysis, the proposed method provides the first benchmark of 61% test accuracy on given dataset.","PeriodicalId":271345,"journal":{"name":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC49074.2020.9051332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Facial Expressions are an integral part of human communication. Therefore, correct classification of facial expression in image and video data has been an important quest for researchers and software development industry. In this paper we propose the video classification method using Recurrent Neural Networks (RNN) in addition to Convolution Neural Networks (CNN) to capture temporal as well spatial features of a video sequence. The methodology is tested on The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS). Since no other results were available on this dataset using only visual analysis, the proposed method provides the first benchmark of 61% test accuracy on given dataset.
视频中的面部表情识别:基于CNN-LSTM的视频分类模型
面部表情是人类交流不可或缺的一部分。因此,对图像和视频数据中的面部表情进行正确分类一直是研究人员和软件开发行业的重要课题。在本文中,我们提出了使用循环神经网络(RNN)和卷积神经网络(CNN)来捕获视频序列的时间和空间特征的视频分类方法。该方法在瑞尔森情感言语与歌曲视听数据库(RAVDESS)上进行了测试。由于仅使用视觉分析在该数据集上没有其他结果可用,因此所提出的方法在给定数据集上提供了61%测试精度的第一个基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信