News video story segmentation

Yong Fang, Xiaofei Zhai, Jingwang Fan
{"title":"News video story segmentation","authors":"Yong Fang, Xiaofei Zhai, Jingwang Fan","doi":"10.1109/MMMC.2006.1651357","DOIUrl":null,"url":null,"abstract":"This paper presents a two-level framework for news video segmentation. Our framework is established-based upon a similar framework as in. We extended the original framework by adding rule-based pre-segmentation module, similarity measurement module and new features. We perform decision tree at the shot level and HMM (hidden Markov models) analysis at the story level, respectively. Experiment result with a training set of 24 hours (967 story units) news video from CCTV-9 (China Central TV-International) and a testing set of 24 hours (779 story units) news video from several TV-channels show that our semi-automatic system can achieve 81.5% of F1 value in the case of CCTV-9","PeriodicalId":107275,"journal":{"name":"2006 12th International Multi-Media Modelling Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 12th International Multi-Media Modelling Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMMC.2006.1651357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a two-level framework for news video segmentation. Our framework is established-based upon a similar framework as in. We extended the original framework by adding rule-based pre-segmentation module, similarity measurement module and new features. We perform decision tree at the shot level and HMM (hidden Markov models) analysis at the story level, respectively. Experiment result with a training set of 24 hours (967 story units) news video from CCTV-9 (China Central TV-International) and a testing set of 24 hours (779 story units) news video from several TV-channels show that our semi-automatic system can achieve 81.5% of F1 value in the case of CCTV-9
新闻视频故事分割
本文提出了一种两级新闻视频分割框架。我们的框架是基于类似的框架建立的。对原有框架进行了扩展,增加了基于规则的预分割模块、相似度测量模块和新特性。我们分别在镜头层面和故事层面进行决策树和隐马尔可夫模型分析。用CCTV-9(中央电视台-国际)的24小时(967个故事单元)新闻视频训练集和多个频道的24小时(779个故事单元)新闻视频测试集进行的实验结果表明,我们的半自动系统在CCTV-9的情况下可以达到F1值的81.5%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信