Object Based Key Frame Selection for Hand Gesture Recognition

Ketki P. Kshirsagar, D. Doye
{"title":"Object Based Key Frame Selection for Hand Gesture Recognition","authors":"Ketki P. Kshirsagar, D. Doye","doi":"10.1109/ARTCOM.2010.80","DOIUrl":null,"url":null,"abstract":"The sign language recognition is the most popular research area involving computer vision, pattern recognition and image processing. It enhances communication capabilities of the mute person. In this paper, we present an object based key frame selection., Hausdorff distance, Forward Algorithm and Euclidean distance are used for shape similarity for hand gesture recognition. We proposed use to the hidden markov model and nonlinear time alignment model with key frame selection facility and gesture trajectory features for hand gesture recognition. Experimental results demonstrate the effectiveness of our proposed scheme for recognizing American Sign Language.","PeriodicalId":398854,"journal":{"name":"2010 International Conference on Advances in Recent Technologies in Communication and Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Advances in Recent Technologies in Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARTCOM.2010.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The sign language recognition is the most popular research area involving computer vision, pattern recognition and image processing. It enhances communication capabilities of the mute person. In this paper, we present an object based key frame selection., Hausdorff distance, Forward Algorithm and Euclidean distance are used for shape similarity for hand gesture recognition. We proposed use to the hidden markov model and nonlinear time alignment model with key frame selection facility and gesture trajectory features for hand gesture recognition. Experimental results demonstrate the effectiveness of our proposed scheme for recognizing American Sign Language.
基于对象的关键帧选择手势识别
手语识别是计算机视觉、模式识别和图像处理等领域的研究热点。它提高了哑巴的沟通能力。本文提出了一种基于对象的关键帧选择方法。采用Hausdorff距离、前向算法和欧氏距离进行形状相似度识别。提出利用隐马尔可夫模型和非线性时间对齐模型结合关键帧选择功能和手势轨迹特征进行手势识别。实验结果证明了该方法对美国手语识别的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信