Instrument Residual Estimator for Any Response with Endogenous Binary Treatment

Myoung‐jae Lee
{"title":"Instrument Residual Estimator for Any Response with Endogenous Binary Treatment","authors":"Myoung‐jae Lee","doi":"10.2139/ssrn.3495756","DOIUrl":null,"url":null,"abstract":"Given a binary treatment D, a response Y with its potential versions (Y⁰,Y¹) and covariates X, often D is endogenous. Unless Y is continuous, dealing with a binary endogenous D has been difficult even when an instrument δ is available. This paper shows that, for any form of Y (binary, ordinal, censored, continuous, ...), we always have a linear representation Y=μ₀(X)+μ₁(X)D+error with E(error|δ,X)=0, where μ₀(X) is an unknown 'X-conditional intercept' and μ₁(X)≡E(Y¹-Y⁰|complier,X) is the unknown 'X-conditional slope/effect'. We propose 'instrumental residual estimator (IRE)' using δ-E(δ|X) as an instrument for D. IRE is consistent for the Cov(δ,D|X)-weighted average of E(Y¹-Y⁰|complier,X), which screens out individuals with weak instruments in the sense of small |Cov(δ,D|X)|. IRE is easy to implement, and has an asymptotic variance estimator that works well in small samples as a simulation study demonstrates. If desired, a 'weighted IRE' can be used as well to estimate E{E(Y¹-Y⁰|complier,X)}.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3495756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a binary treatment D, a response Y with its potential versions (Y⁰,Y¹) and covariates X, often D is endogenous. Unless Y is continuous, dealing with a binary endogenous D has been difficult even when an instrument δ is available. This paper shows that, for any form of Y (binary, ordinal, censored, continuous, ...), we always have a linear representation Y=μ₀(X)+μ₁(X)D+error with E(error|δ,X)=0, where μ₀(X) is an unknown 'X-conditional intercept' and μ₁(X)≡E(Y¹-Y⁰|complier,X) is the unknown 'X-conditional slope/effect'. We propose 'instrumental residual estimator (IRE)' using δ-E(δ|X) as an instrument for D. IRE is consistent for the Cov(δ,D|X)-weighted average of E(Y¹-Y⁰|complier,X), which screens out individuals with weak instruments in the sense of small |Cov(δ,D|X)|. IRE is easy to implement, and has an asymptotic variance estimator that works well in small samples as a simulation study demonstrates. If desired, a 'weighted IRE' can be used as well to estimate E{E(Y¹-Y⁰|complier,X)}.
内源性二元处理下任何响应的仪器残差估计量
给定二元治疗D,反应Y及其潜在版本(Y⁰,Y¹)和协变量X,通常D是内生的。除非Y是连续的,否则即使有仪器δ可用,处理二进制内源性D也是困难的。本文表明,对于任何形式的Y(二进制,有序,截除,连续,…),我们总是有一个线性表示Y=μ₀(X)+μ₁(X)D+误差,其中E(error|δ,X)=0,其中μ₀(X)是未知的“X条件截距”,μ₁(X)≡E(Y¹-Y⁰|编译器,X)是未知的“X条件斜率/效应”。我们提出了“仪器残差估计器(IRE)”,使用δ-E(δ|X)作为D的仪器。IRE对于E(Y¹-Y⁰| compiler,X)的Cov(δ,D|X)加权平均值是一致的,它在小Cov(δ,D|X)|的意义上筛选出仪器弱的个体。IRE易于实现,并且具有在小样本中工作良好的渐近方差估计器,如模拟研究所示。如果需要,也可以使用“加权IRE”来估计E{E(Y¹-Y⁰| compiler,X)}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信