Sparse data interpolation for selflearning cavitation control

M. Simmler, M. Pottmann, H. P. Jorgl
{"title":"Sparse data interpolation for selflearning cavitation control","authors":"M. Simmler, M. Pottmann, H. P. Jorgl","doi":"10.1109/CCA.1994.381340","DOIUrl":null,"url":null,"abstract":"This paper describes methods for constructing and changing characteristic surfaces from sparse data. Particular emphasis is put on methods capable of locally modifying the surface whenever a new data point becomes available. A local radial-basis-function network (RBFN) is described and analysed in some depth and contrasted to two alternative methods which use iterative increment functions and a minimum-norm-network approach, respectively. The local RBFN requires the least computational effort while still providing a sufficiently high degree of accuracy for the current application. It can be implemented very memory efficiently on a programmable logic controller (PLC).<<ETX>>","PeriodicalId":173370,"journal":{"name":"1994 Proceedings of IEEE International Conference on Control and Applications","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 Proceedings of IEEE International Conference on Control and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1994.381340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes methods for constructing and changing characteristic surfaces from sparse data. Particular emphasis is put on methods capable of locally modifying the surface whenever a new data point becomes available. A local radial-basis-function network (RBFN) is described and analysed in some depth and contrasted to two alternative methods which use iterative increment functions and a minimum-norm-network approach, respectively. The local RBFN requires the least computational effort while still providing a sufficiently high degree of accuracy for the current application. It can be implemented very memory efficiently on a programmable logic controller (PLC).<>
自学习空化控制的稀疏数据插值
本文描述了从稀疏数据中构造和变换特征曲面的方法。特别强调了当有新的数据点可用时,能够局部修改表面的方法。对局部径向基函数网络(RBFN)进行了深入的描述和分析,并与分别使用迭代增量函数和最小范数网络方法的两种替代方法进行了比较。本地RBFN需要最少的计算工作量,同时仍然为当前应用程序提供足够高的精度。它可以在可编程逻辑控制器(PLC)上非常高效地实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信