The Geometry of Constrained Randomwalks and an Application to Frame Theory

C. Shonkwiler
{"title":"The Geometry of Constrained Randomwalks and an Application to Frame Theory","authors":"C. Shonkwiler","doi":"10.1109/SSP.2018.8450816","DOIUrl":null,"url":null,"abstract":"Random walks in ${{\\mathbb{R}}^3}$ are classical objects in geometric probability which have, over the last 70 years, been rather successfully used as models of polymers in solution. Modifying the theory to apply to topologically nontrivial polymers, such as ring polymers, has proven challenging, but several recent breakthroughs have been made by thinking of random walks as points in some nice conformation space and then exploiting the geometry of the space. Using tools from symplectic geometry, this approach yields a fast algorithm for sampling loop random walks. Such walks can be lifted via the Hopf map to finite unit norm tight frames (FUNTFs) in ${{\\mathbb{C}}^2}$, producing an algorithm for randomly sampling FUNTFs in ${{\\mathbb{C}}^2}$ as well as a mechanism for searching for FUNTFs with nice properties. In general, symplectic geometry seems like a promising tool for understanding the space of FUNTFs in ${{\\mathbb{C}}^d}$ for any d.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Random walks in ${{\mathbb{R}}^3}$ are classical objects in geometric probability which have, over the last 70 years, been rather successfully used as models of polymers in solution. Modifying the theory to apply to topologically nontrivial polymers, such as ring polymers, has proven challenging, but several recent breakthroughs have been made by thinking of random walks as points in some nice conformation space and then exploiting the geometry of the space. Using tools from symplectic geometry, this approach yields a fast algorithm for sampling loop random walks. Such walks can be lifted via the Hopf map to finite unit norm tight frames (FUNTFs) in ${{\mathbb{C}}^2}$, producing an algorithm for randomly sampling FUNTFs in ${{\mathbb{C}}^2}$ as well as a mechanism for searching for FUNTFs with nice properties. In general, symplectic geometry seems like a promising tool for understanding the space of FUNTFs in ${{\mathbb{C}}^d}$ for any d.
约束随机游走的几何及其在框架理论中的应用
${{\mathbb{R}}^3}$中的随机漫步是几何概率中的经典对象,在过去的70年里,它被相当成功地用作溶液中聚合物的模型。将该理论应用于拓扑上的非寻常聚合物,如环状聚合物,已被证明是具有挑战性的,但最近已经取得了一些突破,将随机游走视为一些良好构象空间中的点,然后利用空间的几何形状。使用辛几何中的工具,这种方法产生了一个快速的采样循环随机漫步算法。这种遍历可以通过Hopf映射提升到${{\mathbb{C}}^2}$中的有限单位范数紧框架(funtf),从而产生一个在${{\mathbb{C}}^2}$中随机采样funtf的算法,以及一个搜索具有良好属性的funtf的机制。一般来说,辛几何似乎是理解${{\mathbb{C}}^d}$中任意d的funtf空间的一个很有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信