Massively Parallel Spatially-Variant Maximum Likelihood Image Restoration

A. Boden, D. Redding, R. Hanisch, J. Mo
{"title":"Massively Parallel Spatially-Variant Maximum Likelihood Image Restoration","authors":"A. Boden, D. Redding, R. Hanisch, J. Mo","doi":"10.1364/srs.1995.rwb3","DOIUrl":null,"url":null,"abstract":"We consider a massively parallel implementation of Richardson-Lucy or maximum likelihood restoration with a spatially-variant point spread function (PSF). Richardson-Lucy iterates involve the computation of sums of the form: where O(x'\n q\n ) is the incident optical field estimate at discrete source location x'\n q\n , I(x\n q\n ) is the measured discrete image at discrete field location x\n q\n , and P(x\n q\n , x'\n q\n ) is the discrete PSF – the probability that a photon from source region x'\n q\n is incident on the detector at field region x\n q\n . In general P is a function of source and field coordinates, and the computational burden of Eq. 1 is intractably large.","PeriodicalId":184407,"journal":{"name":"Signal Recovery and Synthesis","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1995.rwb3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We consider a massively parallel implementation of Richardson-Lucy or maximum likelihood restoration with a spatially-variant point spread function (PSF). Richardson-Lucy iterates involve the computation of sums of the form: where O(x' q ) is the incident optical field estimate at discrete source location x' q , I(x q ) is the measured discrete image at discrete field location x q , and P(x q , x' q ) is the discrete PSF – the probability that a photon from source region x' q is incident on the detector at field region x q . In general P is a function of source and field coordinates, and the computational burden of Eq. 1 is intractably large.
大规模并行空间变化最大似然图像恢复
我们考虑了Richardson-Lucy的大规模并行实现或具有空间变异点扩展函数(PSF)的最大似然恢复。Richardson-Lucy迭代涉及计算如下形式的和:其中O(x' q)是在离散源位置x' q处的入射光场估计,I(x q)是在离散场位置x q处测量的离散图像,P(x q, x' q)是离散PSF -来自源区域x' q的光子入射到场区域x q的探测器上的概率。一般来说,P是源坐标和场坐标的函数,并且Eq. 1的计算负担非常大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信