Hadith Authenticity Prediction using Sentiment Analysis and Machine Learning

F. Haque, Anika Hossain Orthy, Shahnewaz Siddique
{"title":"Hadith Authenticity Prediction using Sentiment Analysis and Machine Learning","authors":"F. Haque, Anika Hossain Orthy, Shahnewaz Siddique","doi":"10.1109/AICT50176.2020.9368569","DOIUrl":null,"url":null,"abstract":"Starting around 815AD/200AH scholars have put immense effort towards gathering and sifting authentic hadiths, which are prophetic traditions of the Muslim community. The authenticity of a hadith solely depends on the reliability of its reporters and narrators. Till now scholars have had to do this task manually by precisely anatomizing each hadith’s chain of narrators or the list of people related to the transmission of a particular hadith. The evolution of modern computer science techniques has enabled new methods and introduced a potential paradigm shift in the science of hadith authentication. Focusing on the chain of narrators (also known as \"Isnad\") of a hadith, we have used a technique called ‘Sentiment Analysis’ from Natural Language Processing (NLP) to build a text classifier which tries to predict the authenticity of a hadith. It learns from our custom-made dataset of Isnads and predicts an unknown hadith to be either authentic or fabricated based upon its Isnad. Our classifier was 86% accurate when tested on the test hadith dataset.","PeriodicalId":136491,"journal":{"name":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT50176.2020.9368569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Starting around 815AD/200AH scholars have put immense effort towards gathering and sifting authentic hadiths, which are prophetic traditions of the Muslim community. The authenticity of a hadith solely depends on the reliability of its reporters and narrators. Till now scholars have had to do this task manually by precisely anatomizing each hadith’s chain of narrators or the list of people related to the transmission of a particular hadith. The evolution of modern computer science techniques has enabled new methods and introduced a potential paradigm shift in the science of hadith authentication. Focusing on the chain of narrators (also known as "Isnad") of a hadith, we have used a technique called ‘Sentiment Analysis’ from Natural Language Processing (NLP) to build a text classifier which tries to predict the authenticity of a hadith. It learns from our custom-made dataset of Isnads and predicts an unknown hadith to be either authentic or fabricated based upon its Isnad. Our classifier was 86% accurate when tested on the test hadith dataset.
基于情感分析和机器学习的圣训真实性预测
从公元815年/公元200年左右开始,学者们投入了巨大的努力来收集和筛选真正的圣训,这是穆斯林社区的预言传统。圣训的真实性完全取决于它的记者和叙述者的可靠性。到目前为止,学者们不得不通过精确地解剖每个圣训的叙述者链或与特定圣训传播有关的人员名单来手工完成这项任务。现代计算机科学技术的发展使新方法成为可能,并在圣训认证科学中引入了潜在的范式转变。专注于圣训的叙述者链(也称为“Isnad”),我们使用了自然语言处理(NLP)中的“情感分析”技术来构建一个文本分类器,试图预测圣训的真实性。它从我们定制的Isnad数据集中学习,并根据Isnad预测未知的圣训是真实的还是捏造的。在测试hadith数据集上测试时,我们的分类器准确率为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信