{"title":"Atmospheric simulation using a liquid crystal wavefront-controlling device","authors":"M. Brooks, M. Goda","doi":"10.1117/12.562447","DOIUrl":null,"url":null,"abstract":"Test and evaluation of laser warning devices is important due to the increased use of laser devices in aerial applications. This research consists of an atmospheric aberrating system to enable in-lab testing of various detectors and sensors. This system employs laser light at 632.8nm from a Helium-Neon source and a spatial light modulator (SLM) to cause phase changes using a birefringent liquid crystal material. Measuring outgoing radiation from the SLM using a CCD targetboard and Shack-Hartmann wavefront sensor reveals an acceptable resemblance of system output to expected atmospheric theory. Over three turbulence scenarios, an error analysis reveals that turbulence data matches theory. A wave optics computer simulation is created analogous to the lab-bench design. Phase data, intensity data, and a computer simulation affirm lab-bench results so that the aberrating SLM system can be operated confidently.","PeriodicalId":406438,"journal":{"name":"SPIE Optics + Photonics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.562447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Test and evaluation of laser warning devices is important due to the increased use of laser devices in aerial applications. This research consists of an atmospheric aberrating system to enable in-lab testing of various detectors and sensors. This system employs laser light at 632.8nm from a Helium-Neon source and a spatial light modulator (SLM) to cause phase changes using a birefringent liquid crystal material. Measuring outgoing radiation from the SLM using a CCD targetboard and Shack-Hartmann wavefront sensor reveals an acceptable resemblance of system output to expected atmospheric theory. Over three turbulence scenarios, an error analysis reveals that turbulence data matches theory. A wave optics computer simulation is created analogous to the lab-bench design. Phase data, intensity data, and a computer simulation affirm lab-bench results so that the aberrating SLM system can be operated confidently.