{"title":"Compressed Nonnegative Sparse Coding","authors":"Fei Wang, Ping Li","doi":"10.1109/ICDM.2010.162","DOIUrl":null,"url":null,"abstract":"Sparse Coding (SC), which models the data vectors as sparse linear combinations over basis vectors, has been widely applied in machine learning, signal processing and neuroscience. In this paper, we propose a dual random projection method to provide an efficient solution to Nonnegative Sparse Coding (NSC) using small memory. Experiments on real world data demonstrate the effectiveness of the proposed method.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Sparse Coding (SC), which models the data vectors as sparse linear combinations over basis vectors, has been widely applied in machine learning, signal processing and neuroscience. In this paper, we propose a dual random projection method to provide an efficient solution to Nonnegative Sparse Coding (NSC) using small memory. Experiments on real world data demonstrate the effectiveness of the proposed method.