Feature point detection under extreme lighting conditions

Bronislav Pribyl, A. Chalmers, P. Zemčík
{"title":"Feature point detection under extreme lighting conditions","authors":"Bronislav Pribyl, A. Chalmers, P. Zemčík","doi":"10.1145/2448531.2448550","DOIUrl":null,"url":null,"abstract":"This paper evaluates the suitability of High Dynamic Range (HDR) imaging techniques for feature point detection under extreme lighting conditions. The conditions are extreme in respect to the dynamic range of the lighting within the test scenes used. This dynamic range cannot be captured using standard low dynamic range imagery techniques without loss of detail. Four widely used feature point detectors are used in the experiments: Harris corner detector, Shi-Tomasi, FAST and Fast Hessian. Their repeatability rate is studied under changes of camera viewpoint, camera distance and scene lighting with respect to the image formats used. The results of the experiments show that HDR imaging techniques improve the repeatability rate of feature point detectors significantly.","PeriodicalId":235681,"journal":{"name":"Spring conference on Computer graphics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spring conference on Computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2448531.2448550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

This paper evaluates the suitability of High Dynamic Range (HDR) imaging techniques for feature point detection under extreme lighting conditions. The conditions are extreme in respect to the dynamic range of the lighting within the test scenes used. This dynamic range cannot be captured using standard low dynamic range imagery techniques without loss of detail. Four widely used feature point detectors are used in the experiments: Harris corner detector, Shi-Tomasi, FAST and Fast Hessian. Their repeatability rate is studied under changes of camera viewpoint, camera distance and scene lighting with respect to the image formats used. The results of the experiments show that HDR imaging techniques improve the repeatability rate of feature point detectors significantly.
极端光照条件下的特征点检测
本文评估了高动态范围(HDR)成像技术在极端光照条件下特征点检测的适用性。在使用的测试场景中,这些条件对于照明的动态范围来说是极端的。使用标准的低动态范围图像技术无法在不损失细节的情况下捕获此动态范围。实验中使用了四种常用的特征点检测器:Harris角检测器、Shi-Tomasi、FAST和FAST Hessian。研究了摄像机视点、摄像机距离和场景光照随图像格式的变化而变化的重复率。实验结果表明,HDR成像技术显著提高了特征点检测器的重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信