Improving sleep stage classification from electroencephalographic signals by fusion of contextual information

I. Mporas, Anastasia Efstathiou, V. Megalooikonomou
{"title":"Improving sleep stage classification from electroencephalographic signals by fusion of contextual information","authors":"I. Mporas, Anastasia Efstathiou, V. Megalooikonomou","doi":"10.1109/BIBE.2015.7367736","DOIUrl":null,"url":null,"abstract":"In this article we present a fusion architecture for the automatic classification of sleep stages. The architecture relies on time and frequency domain features which are processed by dissimilar classifiers. The initial predictions of each classifier are refined by using fusion of the prediction estimations together with temporal contextual information of the electroencephalographic signal. The experimental results showed that the proposed architecture achieved approximately 95% sleep stage classification accuracy, which corresponds to an improvement of 5% comparing to the best performing single classifier.","PeriodicalId":422807,"journal":{"name":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2015.7367736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article we present a fusion architecture for the automatic classification of sleep stages. The architecture relies on time and frequency domain features which are processed by dissimilar classifiers. The initial predictions of each classifier are refined by using fusion of the prediction estimations together with temporal contextual information of the electroencephalographic signal. The experimental results showed that the proposed architecture achieved approximately 95% sleep stage classification accuracy, which corresponds to an improvement of 5% comparing to the best performing single classifier.
基于上下文信息融合的脑电信号睡眠阶段分类改进
在本文中,我们提出了一种用于睡眠阶段自动分类的融合架构。该体系结构依赖于由不同分类器处理的时域和频域特征。通过将预测估计与脑电图信号的时间上下文信息融合,对每个分类器的初始预测进行细化。实验结果表明,所提出的架构达到了大约95%的睡眠阶段分类准确率,与性能最好的单一分类器相比,这相当于提高了5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信