A comparative study between CMA evolution strategies and Particle Swarm Optimization for antenna applications

J. Kovitz, Y. Rahmat-Samii
{"title":"A comparative study between CMA evolution strategies and Particle Swarm Optimization for antenna applications","authors":"J. Kovitz, Y. Rahmat-Samii","doi":"10.1109/USNC-URSI-NRSM.2013.6525035","DOIUrl":null,"url":null,"abstract":"Nature-inspired optimization techniques have been at the forefront of research within electromagnetics due to their unique properties as global optimization algorithms. These algorithms are stochastic techniques which direct the optimizer towards the most likely position based on previously tested points. The biggest question for current researchers in this area is which algorithm performs the fastest, provides the best solution, and offers robust convergence for a variety of different function topologies. Within the domain of nature-inspired optimization techniques, the Covariance Matrix Adaptation (CMA) Evolution Strategies (ES) and the Particle Swarm Optimization (PSO) techniques have transpired due to their rapid convergence for many electromagnetics optimization problems.","PeriodicalId":123571,"journal":{"name":"2013 US National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 US National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USNC-URSI-NRSM.2013.6525035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nature-inspired optimization techniques have been at the forefront of research within electromagnetics due to their unique properties as global optimization algorithms. These algorithms are stochastic techniques which direct the optimizer towards the most likely position based on previously tested points. The biggest question for current researchers in this area is which algorithm performs the fastest, provides the best solution, and offers robust convergence for a variety of different function topologies. Within the domain of nature-inspired optimization techniques, the Covariance Matrix Adaptation (CMA) Evolution Strategies (ES) and the Particle Swarm Optimization (PSO) techniques have transpired due to their rapid convergence for many electromagnetics optimization problems.
天线应用中CMA演化策略与粒子群优化的比较研究
受自然启发的优化技术由于其作为全局优化算法的独特特性而一直处于电磁学研究的前沿。这些算法是随机技术,它将优化器指向基于先前测试点的最有可能的位置。当前该领域研究人员面临的最大问题是哪种算法执行速度最快,提供最佳解决方案,并为各种不同的函数拓扑提供鲁棒性收敛。在自然优化技术领域,协方差矩阵自适应(CMA)进化策略(ES)和粒子群优化(PSO)技术因其快速收敛性而得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信